Frequency of a sound wave is commonly referred to as pitch. That is the specialized name for frequency of a sound wave.
Just remember it as pitch.

<u>Explanation:</u>
Velocity of B₁ = 4.3m/s
Velocity of B₂ = -4.3m/s
For perfectly elastic collision:, momentum is conserved

where,
m₁ = mass of Ball 1
m₂ = mass of Ball 2
v₁ = initial velocity of Ball 1
v₂ = initial velocity of ball 2
v'₁ = final velocity of ball 1
v'₂ = final velocity of ball 2
The final velocity of the balls after head on elastic collision would be

Substituting the velocities in the equation

If the masses of the ball is known then substitute the value in the above equation to get the final velocity of the ball.
As per impulse momentum theorem we know that

now here we will have

t = 1.30 ms
m = 0.144 kg

now we need to find final speed using above formula


so final speed is given as above
The appropriate response is Zero degrees. The beam will leave the two mirrors along a way parallel to the one it came in on. This is the guideline of the corner reflector, which is frequently utilized as a radar target. Take note of that the corner reflector utilizes three reflecting surfaces (that are set up at 90o from each other) rather than the two like are being utilized here. Wikipedia has a truly awesome drawing that shows this two-dimentional issue pleasantly. A moment connection is given to the article on the corner reflector and the 3-D angles.
Answer: Increasing the frequency does not increase the wavelength. They are inversely related.
Explanation:
As wavelength increases, frequency decreases. If you look at a transverse wave and it has a long wavelength, there only a few waves produce. Which means there is less frequency produced. So as wavelength increases, frequency decreases. The other way around can work to. As frequency increases, wavelength decreases. They are inversely related.