The following statement best describes how a hearing aid works, An implant bypasses parts of the cochlea and sends messages to the brain, where they are then recognized as sound.
Explanation:
- The hearing aid works as An implant bypasses parts of the cochlea and sends messages to the brain, where they are then recognized as sound.
- A hearing aid is a device designed to improve hearing by making sound audible to a person with hearing loss.
- Modern devices uses all sophisticated digital signal processing to try and improve the speech understanding, intelligibility and comfort for the user, such as signal processing
- Almost all hearing aids in use in the US are digital hearing aids Devices similar to hearing aids include cochlear implant.
- Early devices, such as ear trumpets or ear horns, were the passive amplification cones which were designed to gather the sound energy and directly goes into the ear canal.
- Most common issues with hearing aid fitting and use are the occlusion effect, loudness recruitment, and understanding speech in noise.
Answer:A certain vehicle loses 3.5% of its value each year. If the vehicle has an initial value of $11,168, construct a model that represents the value of the vehicle after a certain number of years. Use your model to compute the value of the vehicle at the end of 6 years.
Explanation:
Answer:
T = 15 kN
F = 23.33 kN
Explanation:
Given the data in the question,
We apply the impulse momentum principle on the total system,
mv₁ + ∑
= mv₂
we substitute
[50 + 3(30)]×10³ × 0 + FΔt = [50 + 3(30)]×10³ × ( 45 × 1000 / 3600 )
F( 75 - 0 ) = 1.75 × 10⁶
The resultant frictional tractive force F is will then be;
F = 1.75 × 10⁶ / 75
F = 23333.33 N
F = 23.33 kN
Applying the impulse momentum principle on the three cars;
mv₁ + ∑
= mv₂
[3(30)]×10³ × 0 + FΔt = [3(30)]×10³ × ( 45 × 1000 / 3600 )
F(75-0) = 1.125 × 10⁶
The force T developed is then;
T = 1.125 × 10⁶ / 75
T = 15000 N
T = 15 kN
Answer:
The governing ratio for thin walled cylinders is 10 if you use the radius. So if you divide the cylinder´s radius by its thickness and your result is more than 10, then you can use the thin walled cylinder stress formulas, in other words:
- if
then you have a thin walled cylinder
or using the diameter:
- if
then you have a thin walled cylinder