Explanation:
<h3>Electrical energy into heat energy..</h3>
<h2>hope it helps.</h2><h2>stay safe healthy and happy...</h2>
Paraphrasing and summarizing
So to put them all in the same units we have
<span>2500 mL </span>
<span>250 mL </span>
<span>25mL </span>
<span>2,500,000,000mL </span>
<span>So the third one is the smallest</span>
0.091 moles are contained in 2.0 L of N2 at standard temperature and pressure.
Explanation:
Data given:
volume of the nitrogen gas = 2 litres
Standard temperature = 273 K
Standard pressure = 1 atm
number of moles =?
R (gas constant) = 0.08201 L atm/mole K
Assuming nitrogen to be an ideal gas at STP, we will use Ideal Gas law
PV = nRT
rearranging the equation to calculate number of moles:
PV = nRT
n = 
putting the values in the equation:
n = 
n = 0.091 moles
0.091 moles of nitrogen gas is contained in a container at STP.
Answer:
The vapor pressure in solution is 0,0051 atm
Explanation:
This is the formula for vapor pressure lowering, the colligative property.
P vapor = Pressure sv pure . Xsv
Where Xsv is data.
Xsv means Molar fraction (moles solvent/total n° moles)
Vapor pressure of water, pure is 17.5 mmHg
P vapor = 0,0313 atm . 0163
P vapor in solution = 0,0051 atm
Molar fraction does not have units
A solution will have less vapor pressure than that observed in the pure solvent.