Answer:
Comets
Explanation:
Comets are planetary celestial bodies consisting of ice and dust, sometimes rocky particles formed in the region of the solar system. Long-period comets propagate towards the Sun by gravitational perturbations caused by passing stars. Some comets usually hyberbolic comets, move through the inner Solar System prior to entering the interstellar region. Short period comet lies beyond the orbit of the Neptune.
The Jovian planets include Jupiter, Saturn, Uranus, and Neptune.
Therefore, leftovers of comets (planetesimal bodies) formed in the region of the solar system that are now occupied by the Jovian planets is due to the dusty particles associated with the comets.
Answer:
We first to know that if the wheel rotates from rest means that at t=0 the velocity and the angle rotated is 0.
Then, we know:

Integrating 2 times, we have:

For the first 27.9 s, we have:
w = 37.107 rad/s
angle = 517.6426 rad
For the next seconds, according to the text, the angular velocity is constant so
w = 37.107 rad/s and hence, integrating:

Then, the time remaining is:
53.5 - 27.9 = 25.6
So for the next 25.6 seconds we have:

Finally, we add the 2 angles and we have as a result:

Answer:
Reading a Graduated Cylinder
Place the graduated cylinder on a flat surface and view the height of the liquid in the cylinder with your eyes directly level with the liquid. The liquid will tend to curve downward. This curve is called the meniscus. Always read the measurement at the bottom of the meniscus.....
hope it helps....
Answer:
Explanation:
potential energy of compressed spring
= 1/2 k d²
= 1/2 x 730 d²
= 365 d²
This energy will be given to block of mass of 1.2 kg in the form of kinetic energy .
Kinetic energy after crossing the rough patch
= 1/2 x 1.2 x 2.3²
= 3.174 J
Loss of energy
= 365 d² - 3.174
This loss is due to negative work done by frictional force
work done by friction = friction force x width of patch
= μmg d , μ = coefficient of friction , m is mass of block , d is width of patch
= .44 x 1.2 x 9.8 x .05
= .2587 J
365 d² - 3.174 = .2587
365 d² = 3.4327
d² = 3.4327 / 365
= .0094
d = .097 m
= 9.7 cm
If friction increases , loss of energy increases . so to achieve same kinetic energy , d will have to be increased so that initial energy increases so compensate increased loss .