The accepted concentration of chlorine is 1.00 ppm that is 1 gram of chlorine per million of water.
The volume of water is
.
Since, 1 gal= 3785.41 mL
Thus, 
Density of water is 1 g/mL thus, mass of water will be
.
Since, 1 grams of chlorine →
grams of water.
1 g of water →
g of chlorine and,
of water →86.6 g of chlorine
Since, the solution is 9% chlorine by mass, the volume of solution will be:

Thus, volume of chlorine solution is 9.62\times 10^{2} mL.
MThe heat energy required to raise the temperature of 0.36Kg of copper from 22 c to 60 c is calculate using the following formula
MC delta T
m(mass)= 0.360kg in grams = 0.360 x1000 = 360 g
c(specific heat energy) = 0.0920 cal/g.c
delta T = 60- 23 = 37 c
heat energy is therefore= 360g x0.0920 cal/g.c x 37 c= 1225.44 cal
Answer:
28.7664 kJ /mol
Explanation:
The expression for Clausius-Clapeyron Equation is shown below as:

Where,
P is the vapor pressure
ΔHvap is the Enthalpy of Vaporization
R is the gas constant (8.314×10⁻³ kJ /mol K)
c is the constant.
The graph of ln P and 1/T gives a slope of - ΔHvap/ R and intercept of c.
Given :
Slope = -3.46×10³ K
So,
- ΔHvap/ R = -3.46×10³ K
<u>ΔHvap = 3.46×10³ K × 8.314×10⁻³ kJ /mol K = 28.7664 kJ /mol</u>
<u></u>
Based on Heisenberg's uncertainty principle, the position and velocity of a particle cannot be determined simultaneously with accuracy.
In other words, Heisenberg's uncertainty principle states that the more accurately we know the position of a particle the less accurately we can know its velocity. Mathematically it is given as:
Δx.mΔv >= h/2π
where: Δx = uncertainty in position
m = mass
Δv = uncertainty in velocity
h = plancks constant
Answer:
a) 1,6%
b) 64,775 g/mol
c) 3,6×10⁻² M
d) 2,3×10⁻³ g/mL
Explanation:
a) The mass fractium of helium is obtained converting the moles of the four gases to grams with molar weight and then caculating of the total of grams how many are of helium, thus:
- Helium: 0,25 moles ×
= 1 g of Helium - Argon: 0,25 moles ×
= 10 g of Argon - Krypton: 0,25 moles ×
= 20,95 g of krypton - Xenon: 0,25 moles ×
= 32,825 g of Xenon
Total grams: 1g+10g+20,85g+30,825g= 62,675 g
Mass fraction of helium:
× 100 = <em>1,6%</em>
<em />
<em>The mass fraction of Helium is 1,6%</em>
<em />
<em>b)</em><em> </em>Because the mole fraction of all gases is the same the average molecular weight of the mixture is:
= 64,775 g/mol
c) The molar concentration is possible to know ussing ideal gas law, thus:
= M
Where:
P is pressure: 150 kPa
R is gas constant: 8,3145
T is temperature: 500 K
And M is molar concentration. Replacing:
M = 3,6×10⁻² M
d) The mass density is possible to know converting the moles of molarity to grams with average molecular weight and liters to mililiters, thus:
3,6×10⁻²
×
×
=
2,3×10⁻³ g/mL
I hope it helps!