Answer:
Active—A volcano is active if it is erupting, or may erupt soon. ...
Dormant—A dormant volcano is one that may have erupted before, but it is no longer erupting. ...
Extinct—An extinct volcano is not erupting and will never erupt again.
Explanation:
Answer:
a). 
b). 
c.) It must be at the bottom
Explanation:
Given:
Volume flow 
Well depp 
a.
The power output of the pum






b.
The pressure of difference the pum
Δ
Δ

c.
It must be at the bottom since the pressure difference is greater than atmospheric pressure, so it wouldn't be able to lift the water all the way
it is just a matter of integration and using initial conditions since in general dv/dt = a it implies v = integral a dt
v(t)_x = integral a_{x}(t) dt = alpha t^3/3 + c the integration constant c can be found out since we know v(t)_x at t =0 is v_{0x} so substitute this in the equation to get v(t)_x = alpha t^3 / 3 + v_{0x}
similarly v(t)_y = integral a_{y}(t) dt = integral beta - gamma t dt = beta t - gamma t^2 / 2 + c this constant c use at t = 0 v(t)_y = v_{0y} v(t)_y = beta t - gamma t^2 / 2 + v_{0y}
so the velocity vector as a function of time vec{v}(t) in terms of components as[ alpha t^3 / 3 + v_{0x} , beta t - gamma t^2 / 2 + v_{0y} ]
similarly you should integrate to find position vector since dr/dt = v r = integral of v dt
r(t)_x = alpha t^4 / 12 + + v_{0x}t + c let us assume the initial position vector is at origin so x and y initial position vector is zero and hence c = 0 in both cases
r(t)_y = beta t^2/2 - gamma t^3/6 + v_{0y} t + c here c = 0 since it is at 0 when t = 0 we assume
r(t)_vec = [ r(t)_x , r(t)_y ] = [ alpha t^4 / 12 + + v_{0x}t , beta t^2/2 - gamma t^3/6 + v_{0y} t ]
Answer:
The force applied on one wheel during braking = 6.8 lb
Explanation:
Area of the piston (A) = 0.4 
Force applied on the piston(F) = 6.4 lb
Pressure on the piston (P) = 
⇒ P = 
⇒ P = 16 
This is the pressure inside the cylinder.
Let force applied on the brake pad = 
Area of the brake pad (
)= 1.7 
Thus the pressure on the brake pad (
) = 
When brake is applied on the vehicle the pressure on the piston is equal to pressure on the brake pad.
⇒ P = 
⇒ 16 = 
⇒
= 16 × 
Put the value of
we get
⇒
= 16 × 1.7
⇒
= 27.2 lb
This the total force applied during braking.
The force applied on one wheel =
=
= 6.8 lb
⇒ The force applied on one wheel during braking.
I hope it helps! good luck in chem!