Explanation:
Mechanical Advantage (MA)
MA=d1d2=FoutFin ; d1 is the distance of effort, d2 is the distance the object is moved
Answer:
0.558 atm
Explanation:
We must first consider that both gases behaves like ideal gases, so we can use the following formula: PV=nRT
Then, we should consider that, whithin a mixture of gases, the total pressure is the sum of the partial pressure of each gas:
P₀ = P₁ + P₂ + ....
P₀= total pressure
P₁=P₂= is the partial pressure of each gass
If we can consider that each gas is an ideal gas, then:
P₀= (nRT/V)₁ + (nRT/V)₂ +..
Considering the molecular mass of O₂:
M O₂= 32 g/mol
And also:
R= ideal gas constant= 0.082 Lt*atm/K*mol
T= 65°C=338 K
4.98 g O₂ = 0.156 moles O₂
V= 7.75 Lt
Then:
P°O₂=partial pressure of oxygen gas= (0.156x0.082x338)/7.75
P°O₂= 0.558 atm
A Magnet is an object that produces a Magnetic Field; it can be formed of a permanent magnet or an electromagnet. The word magnet comes from the Greek "magnítis líthos", which means "Magnesian Stone". Magnesia is an area in Greece (Now Manisa, Turkey) where deposits of magnetite have been discovered since antiquity.
Magnets come in many shapes but no matter what their shapes are, each magnet has a North Pole and a South Pole.
A Magnetic Field is said to exist in a region if a (Magnetic) Force can be exerted on a Magnet. Magnetic Field Lines (Flux Lines) are imaginary lines representing the direction and strength of the Magnetic Field. They go from the North Pole to the South Pole outside the Magnet, and go from the South Pole to the North Pole inside the Magnet. The density of the Magnetic Field Lines is higher near the Poles, and the Magnetic Force is stronger there.
In 1912, Bohr<span> was working for the Nobel laureate J.J. Thompson in England when he was introduced to Ernest Rutherford, whose </span>discovery<span> of the nucleus and development of an atomic model had earned him a Nobel Prize in chemistry in 1908. Under Rutherford's tutelage, </span>Bohr<span> began studying the properties of atoms.
</span>