Answer:
0.006075Joules
Explanation:
The final kinetic energy of the system is expressed as;
KE = 1/2(m1+m2)v²
m1 and m2 are the masses of the two bodies
v is the final velocity of the bodies after collision
get the final velocity using the law of conservation of momentum
m1u1 + m2u2 = (m1+m2)v
0.12(0.45) + 0/12(0) = (0.12+0.12)v
0.054 = 0.24v
v = 0.054/0.24
v = 0.225m/s
Get the final kinetic energy;
KE = 1/2(m1+m2)v
KE = 1/2(0.12+0.12)(0.225)²
KE = 1/2(0.24)(0.050625)
KE = 0.12*0.050625
KE = 0.006075Joules
Hence the final kinetic energy of the system is 0.006075Joules
Answer:
14.3kg
Explanation:
Given parameters:
Quantity of heat = 149000J
Change in temperature = 5.23°C
specific heat of the ice = 2000J/kg°C
Unknown:
Mass of the ice in the bag = ?
Solution:
The heat capacity of a substance is given as:
H = m c Ф
H is the heat capacity
m is the mass
c is the specific heat
Ф is the temperature change;
since m is the unknown, we make it the subject of the expression;
m = H/ mФ
m =
= 14.3kg
Answer:
4 km/hr
Explanation:
The computation of the actual velocity is shown below:
Because the path of its paddles is opposed to the current direction, the real velocity can be determined by deducting the current velocity to its velocity while paddling
So, the actual velocity is
= Upstream - downstream
= 19 km/hr - 15 km/hr
= 4 km/hr
As we can see it is in positive, so it is an upstream direction
Answer:
Scientists plan to release a space probe that will enter the atmosphere of a gaseous planet. The temperature of the gaseous planet increases linearly with the height of the atmosphere as measured from the top of a visible boundary layer, defined as 0 kilometers in altitude. The instruments on board can withstand a temperature of 601 K. At what altitude will the probe's instruments fail? A. 50 kilometers B. 80 kilometers C. 83 kilometers D. 100 kilometers E. 111 kilometers
Explanation:
A. 50 kilometers
Answer:
y = 4 Sin (2πt)
Explanation:
Amplitude, A = 4
frequency, f = 1
Wave function is given by
y = A sinωt
where, ω is angular frequency
ω = 2 π f = 2 π x 1 = 2π
So, the desired wave function
y = 4 Sin (2πt)