Answer:
Firstly, We have to convert it in the Miles formula...
No. of moles = Mass given/Molar Mass
So, the final answer be come<em> </em>
<h3><em><u> </u></em><em><u>Ans</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>5</u></em><em><u>0</u></em><em><u>.</u></em><em><u>8</u></em><em><u> </u></em><em><u>gm</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>there</u></em><em><u> </u></em><em><u>same</u></em><em><u> </u></em><em><u>%</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>5</u></em><em><u>0</u></em><em><u>.</u></em><em><u>8</u></em><em><u>%</u></em><em><u> </u></em><em><u>butane</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>react</u></em><em><u>ion</u></em><em><u> </u></em></h3>
Answer:
hydrogen atom and oxygen atom
Answer:
Explanation: S + 6 HNO3 --> H2SO4 + 6 NO2 + 2 H2O In the above equation how many moles of water can be made when 115.3 grams of HNO3 are consumed? Round your answer to the nearest tenth. If you answer is a whole number like 4, report the answer as 4.0 Use the following molar masses. If you do not use these masses, the computer will mark your answer incorrect.: Element Molar Mass Hydrogen 1 Nitrogen 14 Sulfur 32 Oxygen 16...
Hope it helps..!!
To solve this problem, we begin by first calculating the area of the front lawn. The length and width of the lawn was given and the area of a rectangle is given by the formula: Area = length x width. Thus, the area of the front lawn can be obtained by multiplying 18 ft by 20 ft, wherein we get 360 ft^2 as the area.
Second, the problem indicated that each square foot of lawn accumulates 1450 new snow flakes per minute. This can be translated into the expression 1450 snow flakes/ (minute·ft^2). In this way, we can convert it to units of mass (kg). Afterwards, we simply need to multiply it to the area of the lawn and convert minute to hour. The following expression is then used:
1450 snow flakes/ (minute·ft^2) x 1.90 mg/snow flake x 1 g/1000 mg x 1kg/1000 g x 360 ft^2 x 60 minutes/hour = 59.508 kg snow flake/hour
It is then calculated that 59.508 kg of snow flake accumulates in the lawn every hour.