To calculate the average atomic weight, each exact atomic weight is multiplied by its percent abundance, then, add the results together. If the natural abundance of 63Cu is assigned x, the natural abundance of 65Cu is 1-x (the two abundance always add up to 1). So the solution is: (63)(x)+(65)(1-x) = 63.55, 63x+65-65x=63.55, x=0.725=72.5%. The natural abundance of 63Cu is 72.5%, that of 65Cu is 1-72.5%=27.5%.
The strength of an acid increases if the stability of conjugate base increases
The stability of a conjugate base increases with the presence of electron with drawing group (electronegative group)
Thus more the electronegativity of an atom attached to a carboxylic acid higher the strength of acid
In these examples CH3CH2CH2CF2CH2COOH contains to electronegative flourine atoms which stabilizes the conjugate base hence this will be the strongest acid among the given acids
The frequency of the radiation is equal to
Hertz.
<u>Given the following data:</u>
- Photon energy =
Joules
To find the frequency of this radiation, we would use the Planck-Einstein equation.
Mathematically, the Planck-Einstein relation is given by the formula:

<u>Where:</u>
Substituting the given parameters into the formula, we have;

Frequency, F =
Hertz
Read more: brainly.com/question/16901506
The number<span> of protons in the nucleus of an </span>atom is equal to <span>the </span><span>atomic number of an element. You can also find it by subtracting the number of neutrons from the atomic mass. Atomic Number = Atomic Mass - No. of Neutrons.</span>