A student compares the boiling point of substances having different intermolecular forces. <u>Boiling points of various substances</u> is the dependent variable that student most likely use.
<h3>Does the nature of intermolecular forces present in different substance affect their boiling points?</h3>
The boiling point of a substance is proportional to the strength of its intermolecular forces, the higher the boiling point, the stronger the intermolecular forces. We can compare the strengths of intermolecular forces by comparing the boiling points of different substances.
<h3>What properties are affected by intermolecular forces?</h3>
Intermolecular forces are measured by boiling points.
Intermolecular forces increase as bond polarization increases.
Ionic > hydrogen bonding > dipole dipole > dispersion is the order of the strength of intermolecular forces (and thus their impact on boiling points).
<h3>How can you determine strong and weak intermolecular forces?</h3>
Substances with strong intermolecular forces are very attracted to one another and are held together tightly. These substances require a great deal of energy to separate, whereas substances with weak intermolecular forces are held together very loosely and have weak interactions.
Learn more about intermolecular forces:
<u><em>brainly.com/question/13479228</em></u>
#SPJ4
Answer:
I believe it would be 30 chromosomes
Explanation:
Hope that this helps you ;-)
Answer:
C) low activation energy of forward reaction
Explanation:
Activation energy for the forward reaction is the quantity of free energy which is needed for a reaction to move from the reactant phase of energy level to the transition state of energy level. The higher the rate of energy level, the slower the chemical reaction.
Activation energy is a barrier that must be overcome for a reaction to take place.
Answer:
In the first part of Lesson 1, it was mentioned that sound is a mechanical wave that is created by a vibrating object. The vibrations of the object set particles in the surrounding medium in vibrational motion, thus transporting energy through the medium.