Answer:
0.007 mol
Explanation:
We can solve this problem using the ideal gas law:
PV = nRT
where P is the total pressure, V is the volume, R the gas constant, T is the temperature and n is the number of moles we are seeking.
Keep in mind that when we collect a gas over water we have to correct for the vapor pressure of water at the temperature in the experiment.
Ptotal = PH₂O + PO₂ ⇒ PO₂ = Ptotal - PH₂O
Since R constant has unit of Latm/Kmol we have to convert to the proper unit the volume and temperature.
P H₂O = 23.8 mmHg x 1 atm/760 mmHg = 0.031 atm
V = 1750 mL x 1 L/ 1000 mL = 0.175 L
T = (25 + 273) K = 298 K
PO₂ = 1 atm - 0.031 atm = 0.969 atm
n = PV/RT = 0.969 atm x 0.1750 L / (0.08205 Latm/Kmol x 298 K)
n = 0.007 mol
According of Dalton's law of Partial pressure, the total pressure of a mixture of gases is the sum of the partial pressures of the individual vases in the mixture.
Hence;
The for hydrogen collected over water, we have a mixture of hydrogen gas and water vapour.
Total pressure = pressure of hydrogen gas + vapour pressure of water
Pressure of hydrogen gas = Total pressure - vapour pressure of water
Pressure of hydrogen gas = 636 mmHg - 28.3 mmHg
Pressure of hydrogen gas = 607.7 mmHg
Answer:
Explanation:
The law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass cannot change, so the quantity can neither be added nor be removed.
hope it helps
Answer:
- C₃H₈ (g) + 5O₂(g) → 3CO₂ (g) + 4H₂O (l)
(option D. with the proviso that the subscripts of propane's chemical formula must be corrected)
Explanation:
<em>Propane</em> is the saturated hydrocarbon, alkane, with chemical formula C₃H₈ or CH₃CH₂CH₃.
The complete combustion of the hydrocarbons yield carbon dioxide (CO₂) and water (H₂O).
The chemical equation that represents this combustion is:
- C₃H₈ (g) + O₂(g) → CO₂ (g) + H₂O (l) (skeleton equation: unbalanced)
Once you balance it, you get:
- C₃H₈ (g) + 5O₂(g) → 3CO₂ (g) + 4H₂O (l)
Left side Right side
C 3 3
H 8 4×2 = 8
O 5×2 = 10 3×2 + 4 = 10
That equation corresponds to the option D. of the list, with the proviso that the subscripts of propane's chemical formula must be corrected
Answer:
The honey would sink to the bottom
Explanation:
A simple interpretation of Archimedes' principle is that, in water, the bodys with density lower than that of water will float on top of the water (That is, density <1g/mL). In the other way, a body with density higher than that of water will sink to the bottom.
As density of honey is higher than density of water:
<h3>The honey would sink to the bottom</h3>