Answer:
The correct statements are listed below.
Explanation:
1 it only takes little energy to break O-P bonds in ATP.
2 The OH-P bond that is formed is a weak bond.
3 The breaking of the O-P bond releases energy that is stored in the bond.
Answer:
CO3^2- has the weakest C-O bond
Explanation:
Hybridization is a valence bond concept that has to do with the mixing of atomic orbitals to give hybrid atomic orbitals suitable for overlapping with orbitals of other atoms to form molecules. The hybridization of the carbon atom in CO, CO2 and CO3^2- are; sp, sp and sp2. This implies that there must be pi bonding in each of the species since sp and sp2 hybridized carbon atoms are known to lead to molecules possessing pi bonds.
In CO2, carbon in sp hybridized state is bonded to two oxygen atoms in sp2 hybridized state leading to a double bond between carbon and each oxygen atom. In CO, the carbon atom is sp hybridized while the oxygen atom is sp2 hybridized. CO3^2- contains an sp2 hybrized carbon atom in a trigonal planar geometry.
The relative bond lengths of the C-O bond in CO2, CO and CO3^2- is 116 pm, 112.8 pm and 136pm. Hence CO3^2- has the longest bond length. Remember that bond length is inversely proportional to the bond order. That is, the shorter the bond length, the greater the bond order. This implies that CO will have the greatest bond order because it shows the shortest bond length. It turns out that CO has a bond order of 3, CO2 has a bond order of 2 and CO3^2- has a bond order of 1.33. This is intermediate between the bond order of single and that of double C-O bond hence CO3^2- is represented using resonance structures.
The species with the longest C-O bond length also has the weakest C-O bond hence CO3^2- has the weakest C-O bond.
Answer:
mass of HCl = 243.5426 grams
Explanation:
1- we will get the mass of the reacting gold:
volume of gold = length * width * height
volume of gold = 3.2 * 3.8 * 2.8 = 34.048 cm^3 = 34.048 ml<span>
density = mass / volume
Therefore:
mass = density * volume
mass of gold = </span>19.3 * 34.048 = 657.1264 grams
2- we will get the number of moles of the reacting gold:
number of moles = mass / molar mass
number of moles = 657.1264 / 196.96657
number of moles = 3.3362 moles
3- we will get the number of moles of the HCl:
First, we will balanced the given equation. The balanced equation will be as follows:
Au + 2HCl ......> AuCl2 + H2
This means that one mole of Au reacts with 2 moles of HCl.
Therefore 3.3362 moles will react with 2*3.3362 = 6.6724 moles of HCL
4- we will get the mass of the HCl:
From the periodic table:
molar mass of H = 1 gram
molar mass of Cl = 35.5 grams
Therefore:
molar mass of HCl = 1 + 35.5 = 36.5 grams/mole
number of moles = mass / molar mass
Therefore:
mass = number of moles * molar mass
mass of HCl = 6.6724 * 36.5
mass of HCl = 243.5426 grams
Hope this helps :)
Methanol is prepared by reacting Carbon monoxide and Hydrogen gas,
CO + 2 H₂ → CH₃OH
Calculating Moles of CO:
According to equation,
32 g (1 mole) of CH₃OH is produced by = 1 Mole of CO
So,
3.60 × 10² g of CH₃OH is produced by = X Moles of CO
Solving for X,
X = (3.60 × 10² g × 1 Mole) ÷ 32 g
X = 11.25 Moles of CO
Calculating Moles of H₂:
According to equation,
32 g (1 mole) of CH₃OH is produced by = 2 Mole of H₂
So,
3.60 × 10² g of CH₃OH is produced by = X Moles of H₂
Solving for X,
X = (3.60 × 10² g × 2 Mole) ÷ 32 g
X = 22.5 Moles of H₂
Result:
3.60 × 10² g of CH₃OH is produced by reacting 11.25 Moles of CO and 22.5 Moles of H₂.