Answer:
D. It is a chemical reaction because the total mass remains the same when new substances are formed.
Explanation:
A chemical reaction is represented by a chemical equation which show the reactant and products. Reactants are written on left side of arrow while products are written on right side. The number of atoms are remain same however arrangement of atoms is different on both side.
For example:
6H₂O + 6CO₂ + energy → C₆H₁₂O₆ + 6O₂
it is known from balanced chemical equation that 6 moles of carbon dioxide react with the six moles of water and created one mole of glucose and six mole of oxygen. The number of atoms are same on both side however arrangement of atoms is different.
While in case of nuclear reaction small change in mass take place.
Presumptive tests, also known as preliminary tests or field tests, allow drugs to be quickly classified into a particular chemical group, but do not unequivocally identify the presence of a specific chemical compound.
<span>Moles = 0.252
Molarity = 1.07
This question is badly worded. You're asking for moles and I suspect you really want molarity. The number of moles of ammonium chloride you have in the solution will remain constant regardless of the volume of the solution. However, the molarity of the solution will differ depending upon how concentrated it is. So I'll give you both the number of moles of ammonium chloride you have, and the molarity of the resulting solution. Please talk to your teacher if you're confused by the difference between moles and molarity.
The formula for ammonium chloride is NH4Cl. So let's calculate it's molar mass. Start by looking up the associated atomic weights.
Atomic weight nitrogen = 14.0067
Atomic weight hydrogen = 1.00794
Atomic weight chlorine = 35.453
Molar mass NH4Cl = 14.0067 + 4 * 1.00794 + 35.453 = 53.49146 g/mol
Moles NH4Cl = 13.5 g / 53.49146 g/mol = 0.252376735 mol
Molarity is defined as moles per liter, so let's divide the number of moles we have by the volume in liters. So:
0.252376735 mol / 0.235 l = 1.073943551 M
Rounding to 3 significant figures gives: 0.252 moles, 1.07 molarity.</span>
<span>D. The average kinetic energy of their particles is the same.</span>