Cause surface currents to move in circular paths.
Answer:
The hollow cylinder rolled up the inclined plane by 1.91 m
Explanation:
From the principle of conservation of mechanical energy, total kinetic energy = total potential energy

The total energy at the bottom of the inclined plane = total energy at the top of the inclined plane.

moment of inertia, I, of a hollow cylinder = ¹/₂mr²
substitute for I in the equation above;


given;
v₁ = 5.0 m/s
vf = 0
g = 9.8 m/s²

Therefore, the hollow cylinder rolled up the inclined plane by 1.91 m
Answer:
Ionic Compound
Explanation:
We know that an ionic compound dissolves easily in water. Its melting point is very high, and it is a conductor.
The equation for Ionic Compound (IC) versus Electricity (EC) is
IC=1/2 divided by EC
EC is the base for the mathematics, so EC is a base warmth at 360.
360 divided by 1/2 is 180
That is the speed in which the current has.
Glad I could help!
Call me if ya need anything!
:)
Answer:
at point F
Explanation:
To know the point in which the pendulum has the greatest potential energy you can assume that the zero reference of the gravitational energy (it is mandatory to define it) is at the bottom of the pendulum.
Then, when the pendulum reaches it maximum height in its motion the gravitational potential energy is
U = mgh
m: mass of the pendulum
g: gravitational constant
The greatest value is obtained when the pendulum reaches y=h
Furthermore, at this point the pendulum stops to come back in ts motion and then the speed is zero, and so, the kinetic energy (K=1/mv^2=0).
A) answer, at point F