We can compare the two by their kinetic energies. The kinetic energy is the energy when an object
is in motion. It is expressed as the product of the mass of the object and the
square of the velocity divided by two. We assume a velocity of 1 m/s for this problem.<span>
KE = mv^2/2
KE1 = 10 (1)^2
KE1 = 10 J
KE2 = 1(1)^2
KE2 = 1 J
Therefore, c</span><span>ompared to the 10 kg ball, the 1 kg ball has lesser kinetic energy.</span>
Answer: mutation
explanation: no other species of its kind will have this mutation
Answer:
Gpe = 15680 Joules
Explanation:
Gravitational potential energy (GPE) is an energy possessed by an object or body due to its position above the earth.
Mathematically, gravitational potential energy is given by the formula;
G.P.E = mgh
Where;
G.P.E represents potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per seconds square.
h represents the height measured in meters.
Given the following data;
Mass = 20 kg
Height = 80 m
We know that acceleration due to gravity is equal to 9.8 m/s²
To find the gravitational potential energy;
Gpe = mgh
Gpe = 20 * 80 * 9.8
Gpe = 15680 Joules
As per Newton's II law we know that

here we know that


now the mass of the object will be given as



so mass of the object will be 13.3 kg
Answer:
3m/s
Explanation:
Given parameters:
Initial speed = 2m/s
Acceleration = 0.5m/s²
Time = 2s
Unknown:
Final speed = ?
Solution:
To solve this problem, we apply the right motion equation;
V = U + at
V is the final speed
U is the initial speed
a is the acceleration
t is the time
V = 2 + (2 x 0.5)
V = 2 + 1
V = 3m/s