Explanation:
C . frequency
is the correct answer I think .
It's C i believe. To solve it we just take 20 and divide it by 2. Which gives us the average of 10 m/s
-Steel jelly
Answer:
magma
Explanation:
actually cooling and solidification of magma
Answer:
The x-component of the electric field at the origin = -11.74 N/C.
The y-component of the electric field at the origin = 97.41 N/C.
Explanation:
<u>Given:</u>
- Charge on first charged particle,

- Charge on the second charged particle,

- Position of the first charge =

- Position of the second charge =

The electric field at a point due to a charge
at a point
distance away is given by

where,
= Coulomb's constant, having value 
= position vector of the point where the electric field is to be found with respect to the position of the charge
.
= unit vector along
.
The electric field at the origin due to first charge is given by

is the position vector of the origin with respect to the position of the first charge.
Assuming,
are the units vectors along x and y axes respectively.

Using these values,

The electric field at the origin due to the second charge is given by

is the position vector of the origin with respect to the position of the second charge.

Using these values,

The net electric field at the origin due to both the charges is given by

Thus,
x-component of the electric field at the origin = -11.74 N/C.
y-component of the electric field at the origin = 97.41 N/C.
Answer:
Decreases/Reduces
Explanation:
Fill in the blank:
Consider the equation Work = Force X Distance.
<em>If a machine increases the distance over which a force is exerted, the force
</em>
<em>required to do a given amount of work</em> .........
If the work is a constant value, then by isolating force from the equation, we get:
Force = Work / Distance
By increasing the value of the Distance, then the quotient Work. Distance diminishes, and therefore the required force decreases (diminishes, reduces)
Answer: Decreases/Reduces