Answer:
a) m = 59.63 [kg]
b) Wm = 95.41 [N]
Explanation:
El peso de un cuerpo se define como el producto de la masa por la aceleración gravitacional. DE esta manera tenemos:
W = m*g
Donde:
m = masa [kg]
g = gravedad = 9.81 [m/s^2]
m = W / g
m = 585 / 9.81
m = 59.63 [kg]
Es importante aclarar que la masa se conserva independientemente de la ubicación del cuerpo en el espacio.
Por ende su masa sera la misma en la luna.
El peso en la luna se calcula como Wm y es igual a:
Wm = 59.63 * 1.6 = 95.41 [N]
Answer:
13.6 cm
Explanation:
From Snell's law:
n₁ sin θ₁ = n₂ sin θ₂
In the air, n₁ = 1, and light from the horizon forms a 90° angle with the vertical, so sin θ₁ = sin 90° = 1.
Given n₂ = 4/3:
1 = 4/3 sin θ
sin θ = 3/4
If x is the radius of the circle, then sin θ is:
sin θ = x / √(x² + 12²)
sin θ = x / √(x² + 144)
Substituting:
3/4 = x / √(x² + 144)
9/16 = x² / (x² + 144)
9/16 x² + 81 = x²
81 = 7/16 x²
x ≈ 13.6
metamorphic, sedimentary, igneous
Answer:
(a) m = 33.3 kg
(b) d = 150 m
(c) vf = 30 m/s
Explanation:
Newton's second law to the block:
∑F = m*a Formula (1)
∑F : algebraic sum of the forces in Newton (N)
m : mass s (kg)
a : acceleration (m/s²)
Data
F= 100 N
a= 3.0 m/s²
(a) Calculating of the mass of the block:
We replace dta in the formula (1)
F = m*a
100 = m*3
m = 100 / 3
m = 33.3 kg
Kinematic analysis
Because the block moves with uniformly accelerated movement we apply the following formulas:
d= v₀t+ (1/2)*a*t² Formula (2)
vf= v₀+a*t Formula (3)
Where:
d:displacement in meters (m)
t : time interval in seconds (s)
v₀: initial speed in m/s
vf: final speed in m/s
a: acceleration in m/s²
Data
a= 3.0 m/s²
v₀= 0
t = 10 s
(b) Distance the block will travel if the force is applied for 10 s
We replace dta in the formula (2):
d= v₀t+ (1/2)*a*t²
d = 0+ (1/2)*(3)*(10)²
d =150 m
(c) Calculate the speed of the block after the force has been applied for 10 s
We replace dta in the formula (3):
vf= v₀+a*t
vf= 0+(3*(10)
vf= 30 m/s
Answer:
The law of conservation of mass or principle of mass conservation
Explanation:
It states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass cannot change, so quantity can neither be added nor be removed.