6 km/h west would be your answer
Delta enthalpy = 2x386-3x1x432-3x942=-3350kJ/mol
Answer:
P₂ = 0.09 atm
Explanation:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
Given data:
Initial volume = 0.225 L
Initial pressure = 338 mmHg (338/760 =0.445 atm)
Initial temperature = 72 °C (72 +273 = 345 K)
Final temperature = -15°C (-15+273 = 258 K)
Final volume = 1.50 L
Final pressure = ?
Solution:
P₁V₁/T₁ = P₂V₂/T₂
P₂ = P₁V₁ T₂/ T₁ V₂
P₂ = 0.445 atm × 0.225 L × 258 K / 345 K × 1.50 L
P₂ = 25.83 atm .L. K / 293 K . L
P₂ = 0.09 atm
Use the Ideal Gas Law to find the moles of gas first.
Be sure to convert T from Celsius to Kelvin by adding 273.
Also I prefer to deal with pressure in atm rather than mmHg, so divide the pressure by 760 to get it in atm.
PV = nRT —> n = PV/RT
P = 547 mmHg = 547/760 atm = 0.720 atm
V = 1.90 L
T = 33°C = 33 + 273 K = 306 K
R = 0.08206 L atm / mol K
n = (0.720 atm)(1.90 L) / (0.08206 L atm / mol K)(306 K) = 0.0545 mol of gas
Now divide grams by mol to get the molecular weight.
3.42 g / 0.0545 mol = 62.8 g/mol
Answer:
Your answer would be B. Increasing the distance between the water molecules and increasing their phase energy.
Explanation:
Hope this helps you answer this question!