Ans= 3.125*10^22
Solution:
312.5 * 10^20
=3.125 * 10^2 * 10^20
= 3.125 * 10^2+20
= 3.125 *10^22,,
Different isotopes of the same element emit light at slightly different wavelengths, the minimum number of slits is mathematically given as
N=1820slits
<h3>What minimum number of slits is required to resolve these two wavelengths in second-order?</h3>
Generally, the equation for the wave is mathematically given as

Where the chromatic resolving power (R) is defined by

R = nN,
Therefore


and


In conclusion, the minimum number of slits is required to resolve these two wavelengths in second-order

Therefore

N=1820slits
Read more about slits
brainly.com/question/24305019
#SPJ1
Answer:
The concentration of KOH is 0.186 M
Explanation:
First things first, we need too write out the balanced equation between HBr and KOH.
This is given as;
KOH (aq) + HBr (aq) → KBr (aq) + H2O (l)
From the reaction above, we can tell that it takes 1 mole of KOH to react with 1 mole of HBr.
We use the acid base formular in calculating unknown concentrations. This is given as;

where;
Ca = Concentration of acid
Va = Volume of acid
Cb = Concentration of base
Vb = Volume of base
na = Number of moles of acid
nb = Number of moles of base
KOH is the base and HBr is acid.
Hence;
Ca = 0.225
Va = 35
Cb = ?
Vb = 42.3
na = 1
nb = 1
Making Cb subject of formular we have;

Cb = (0.225 * 35 * 1) / (42.3 * 1)
Cb = 0.186 M