<h3>Answer:</h3>
7.57 × 10⁻²² g of F
<h3>Solution:</h3>
Data Given:
Number of Molecules = 8
M.Mass of BF₃ = 67.82 g.mol⁻¹
Mass of Fluorine atoms = ?
Step 1: Calculate Moles of BF₃
Moles = Number of Molecules ÷ 6.022 × 10²³ Molecules.mol⁻¹
Putting value,
Moles = 8 Molecules ÷ 6.022 × 10²³ Molecules.mol⁻¹
Moles = 1.33 × 10⁻²³ mol
Step 2: Calculate Mass of BF₃:
Moles = Mass ÷ M.Mass
Solving for Mass,
Mass = Moles × M.Mass
Putting values,
Mass = 1.33 × 10⁻²³ mol × 67.82 g.mol⁻¹
Mass = 9.0 × 10⁻²² g
Step 3: Calculate Mass of Fluorine Atoms:
As,
67.82 g BF₃ contains = 57 g of F
So,
9.0 × 10⁻²² g will contain = X g of F
Solving for X,
X = (9.0 × 10⁻²² g × 57 g) ÷ 67.82 g
X = 7.57 × 10⁻²² g of F
False. Eyeglasses do not cover all around the eye however safety goggles do
Answer: A
Explanation: Beta particles have a charge of -1
Answer:
0.1313 g.
Explanation:
- It is known that at STP, 1.0 mole of ideal gas occupies 22.4 L.
- Suppose that hydrogen behaves ideally and at STP conditions.
<u><em>Using cross multiplication:</em></u>
1.0 mol of hydrogen occupies → 22.4 L.
??? mol of hydrogen occupies → 1.47 L.
∴ The no. of moles of hydrogen that occupies 1.47 L = (1.0 mol)(1.47 L)/(22.4 L) = 6.563 x 10⁻² mol.
- Now, we can get the no. of grams of hydrogen in 6.563 x 10⁻² mol:
<em>The no. of grams of hydrogen = no. of hydrogen moles x molar mass of hydrogen</em> = (6.563 x 10⁻² mol)(2.0 g/mol) = <em>0.1313 g.</em>