Answer:it is in group 7
Explanation:it is in this group because in the increasing number of atomic number the element is found in group seven. The element is likely to receive 3 electrons while bonding with another element to make it stable.
4452 Meters because 1484 times 3
The right answer for the question that is being asked and shown above is that: "<span>b. number/timed." Reaction Rate refers to the </span> speed of reaction<span> for a reactant or product in a particular </span>reaction<span> is intuitively defined as how fast or slow a</span>re action<span> takes place.</span>
Answer:
This means the amount of PbCrO4 will precipitate first, with a [Pb^2+] concentration of 1.8*10^-12 M
Explanation:
Step 1: Data given
Molarity of Na2CrO4 = 0.010 M
Molarity of NaBr = 2.5 M
Ksp(PbCrO4) = 1.8 * 10^–14
Ksp(PbBr2) = 6.3 * 10^–6
Step 2: The balanced equation
PbCrO4 →Pb^2+ + CrO4^2-
PbBr2 → Pb^2+ + 2Br-
Step 3: Define Ksp
Ksp PbCrO4 = [Pb^2+]*[CrO4^2-]
1.8*10^-14 = [Pb^2+] * 0.010 M
[Pb^2+] = 1.8*10^-14 /0.010
[Pb^2+] = 1.8*10^-12 M
The minimum [Pb^2+] needed to precipitate PbCrO4 is 1.8*10^-12 M
Ksp PbBr2 = [Pb^2+][Br-]²
6.3 * 10^–6 = [Pb^2+] (2.5)²
[Pb^2+] = 1*10^-6 M
The minimum [Pb^2+] needed to precipitate PbBr2 is 1*10^-6 M
This means the amount of PbCrO4 will precipitate first, with a [Pb^2+] concentration of 1.8*10^-12 M
Covalent network. <span>A solid that is extremely hard, that has a very high melting point, and that will not conduct electricity either as a solid or when molten is held together by a continuous three-dimensional network of covalent bonds. Examples include diamond, quartz (SiO </span><span>2 </span>), and silicon carbide (SiC). The electrons are constrained in pairs to a region on a line between the centers of pairs of atoms.<span>
<span /></span>