Answer:
All 4 could be justified.
Explanation:
They all represent ultimate improvement.
Answer:
it is not possible to place the wires in the condui
Explanation:
given data
total area = 2.04 square inches
wires total area = 0.93 square inches
maximum fill conduit = 40%
to find out
Can it is possible place wire in conduit conduit
solution
we know maximum fill is 40%
so here first we get total area of conduit that will be
total area of conduit = 40% × 2.04
total area of conduit = 0.816 square inches
but this area is less than required area of wire that is 0.93 square inches
so we can say it is not possible to place the wires in the conduit
Answer:
2.135
Explanation:
Lets make use of these variables
Ox 16.5 kpsi, and Oy --14,5 kpsi
To determine the factor of safety for the states of plane stress. We have to first understand the concept of Coulomb-Mohr theory.
Mohr–Coulomb theory is a mathematical model describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress.
Please refer to attachment for the step by step solution.
Answer:
The governing ratio for thin walled cylinders is 10 if you use the radius. So if you divide the cylinder´s radius by its thickness and your result is more than 10, then you can use the thin walled cylinder stress formulas, in other words:
- if
then you have a thin walled cylinder
or using the diameter:
- if
then you have a thin walled cylinder
Answer:
the heat transfer from the pipe will decrease when the insulation is taken off for r₂< 
where;
r₂ = outer radius
= critical radius
Explanation:
Note that the critical radius of insulation depends on the thermal conductivity of the insulation k and the external convection heat transfer coefficient h .

The rate of heat transfer from the cylinder increases with the addition of insulation for outer radius less than critical radius (r₂<
) 0, and reaches a maximum when r₂ =
, and starts to decrease for r₂<
. Thus, insulating the pipe may actually increase the rate of heat transfer from the pipe instead of decreasing it when r₂<
.