Answer:
its a view point for auto cad
Explanation:
from my knowlege in IED we learned about it as a way of sing how an object would look in inventor or auto CAD
Answer:
All of the above
Explanation:
firstly, a creep can be explained as the gradual deformation of a material over a time period. This occurs at a fixed load with the temperature the same or more than the recrystallization temperature.
Once the material gets loaded, the instantaneous creep would start off and it is close to electric strain. in the primary creep area, the rate of the strain falls as the material hardens. in the secondary area, a balance between the hardening and recrystallization occurs. The material would get to be fractured hen recrstallization happens. As temperature is raised the recrystallization gets to be more.
Answer:
Answer is c Heisenberg's uncertainty principle
Explanation:
According to Heisenberg's uncertainty principle there is always an inherent uncertainty in measuring the position and momentum of a particle simultaneously.
Mathematically

here 'h' is planck's constant
The thickness of aluminium needed to stop the beam electrons, protons and alpha particles at the given dfferent kinetic energies is 1.5 x 10⁻¹⁴ m.
<h3>
Thickness of the aluminum</h3>
The thickness of the aluminum can be determined using from distance of closest approach of the particle.

where;
- Z is the atomic number of aluminium = 13
- e is charge
- r is distance of closest approach = thickness of aluminium
- k is Coulomb's constant = 9 x 10⁹ Nm²/C²
<h3>For 2.5 MeV electrons</h3>

<h3>For 2.5 MeV protons</h3>
Since the magnitude of charge of electron and proton is the same, at equal kinetic energy, the thickness will be same. r = 1.5 x 10⁻¹⁴ m.
<h3>For 10 MeV alpha-particles</h3>
Charge of alpah particle = 2e

Thus, the thickness of aluminium needed to stop the beam electrons, protons and alpha particles at the given dfferent kinetic energies is 1.5 x 10⁻¹⁴ m.
Learn more about closest distance of approach here: brainly.com/question/6426420
Answer:
See explanation
Explanation:
The magnetic force is
F = qvB sin θ
We see that sin θ = 1, since the angle between the velocity and the direction of the field is 90º. Entering the other given quantities yields
F
=
(
20
×
10
−
9
C
)
(
10
m/s
)
(
5
×
10
−
5
T
)
=
1
×
10
−
11
(
C
⋅
m/s
)
(
N
C
⋅
m/s
)
=
1
×
10
−
11
N