1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dem82 [27]
3 years ago
14

What kind of exercise should you do when you're cooling down after an intense workout?

Physics
2 answers:
stellarik [79]3 years ago
7 0

Answer:

Planks?

Explanation:

It's kinda resting

Sauron [17]3 years ago
6 0

Answer:

weights

walking

stretching

etc.

You might be interested in
Eventually, the process approaches a steady state. In that steady state, the charge of the capacitor is not changing. What is th
devlian [24]

Answer:

The current in the circuit must be zero.

Explanation:

In a RC circuit, the steady state is reached when either the capacitor is fully charged or fully discharged. In either case, there must not be any current through the circuit because if it exists, it will deliver charge to the capacitor and thus change its charge, which is not a steady state.

6 0
3 years ago
A high jumper jumps 2.04 m. If the jumper has a mass of 67 kg, what is his gravitational potential energy at the highest point i
Mariulka [41]

Answer: 1339.5 joules

Explanation:

Gravitational potential energy, GPE is the energy possessed by the jumper as he moves against gravity.

Thus, GPE = Mass m x Acceleration due to gravity g x Height h

Since Mass = 67kg

g = 9.8m/s^2

h = 2.04 metres

Thus, GPE = 67kg x 9.8m/s^2 x 2.04m

GPE = 1339.5 joules

Thus, the gravitational potential energy at the highest point is 1339.5 joules

3 0
3 years ago
Background information about reflection and refraction of light
KIM [24]

Answer:

reflection :

  • angle of reflection and angle of incidence is equal
  • Incident ray and reflect d ray plus normal lies on the same plan on a same point
  • light reflect uniformly if it is incident on a plan surface

refraction :

  • light will refrect if light goes from rare medium to a dense medium or vice versa
  • after the light is refracted, it retunes to its original direction
  • angle of incidence is not equal to the angle of refraction
4 0
3 years ago
Two 51 g blocks are held 30 cm above a table. As shown in the figure, one of them is just touching a 30-long spring. The blocks
vivado [14]

The concept of this question can be well understood by listing out the parameters given.

  • The mass of the block = 51 g = 51 × 10⁻³ kg
  • The distance of the block from the table = 30 cm
  • Length of the spring = 30 cm

The purpose is to determine the spring constant.

Let us assume that the two blocks are Block A and Block B.

At point A on block A, the initial velocity on the block is zero

i.e. u = 0

We want to determine the time it requires for Block A to reach the table. The can be achieved by using the second equation of motion which can be expressed by using the formula.

\mathsf{S = ut + \dfrac{1}{2}gt^2}

From the above formula,

The distance (S) = 30 cm; we need to convert the unit to meter (m).

  • Since 1 cm = 0.01 m
  • Then, 30cm = 0.3 m

The acceleration (g) due to gravity = 9.8 m/s²

∴

inputting the values into the equation above, we have;

\mathsf{0.3 = (0)t + \dfrac{1}{2}*(9.80)*(t^2)}

\mathsf{0.3 = \dfrac{1}{2}*(9.80)*(t^2)}

\mathsf{0.3 =4.9*(t^2)}

By dividing both sides by 4.9, we have:

\mathsf{t^2 = \dfrac{0.3}{4.9}}

\mathsf{t^2 = 0.0612}

\mathsf{t = \sqrt{0.0612}}

\mathsf{t =0.247  \ seconds}

However, block B comes to an instantaneous rest on point C. This is achieved by the dropping of the block on the spring. During this process, the spring is compressed and it bounces back to oscillate in that manner. The required time needed to get to this point C is half the period, this will eventually lead to the bouncing back of the block with another half of the period, thereby completing a movement of one period.

By applying the equation of the time period of a simple harmonic motion.

\mathsf{T = 2 \pi \sqrt{\dfrac{m}{k}}}

where the relation between time (t) and period (T) is:

\mathsf{t = \dfrac{T}{2}}

T = 2t

T = 2(0.247)

T = 0.494 seconds

\mathsf{T = 2 \pi \sqrt{\dfrac{m}{k}}}

By making the spring constant k the subject of the formula:

\mathsf{\dfrac{T}{2 \pi } = \sqrt{ \dfrac{m}{k}}}

\Big(\dfrac{T}{2 \pi }\Big)^2 = { \dfrac{m}{k}

\dfrac{T^2}{(2 \pi)^2 }= { \dfrac{m}{k}

\mathsf{ T^2 *k = 2 \pi^2*m} \\ \\  \mathsf{  k = \dfrac{2 \pi^2*m}{T^2}}

\mathsf{  k =\Big( \dfrac{(2 \pi)^2*(51 \times 10^{-3})}{(0.494)^2} \Big) N/m}

\mathbf{  k =8.25 \ N/m}

Therefore, we conclude that the spring constant as a result of instantaneous rest caused by the compression of the spring is 8.25 N/m.

Learn more about simple harmonic motion here:

brainly.com/question/17315536?referrer=searchResults

6 0
3 years ago
Help pleasee i give brainliest
MA_775_DIABLO [31]

Answer:

A is a solid. C is a gas. In solid an liquid the particals are touching. In C, the particals have less affect on each other because they are so far apart.

5 0
4 years ago
Other questions:
  • The Doppler effect is an effect produced by a moving source of sound or electromagnetic waves due to the relative motion of a so
    13·2 answers
  • Why is the chemical formula magnesium sulfide written as MgS and NOT Mg2S2?
    11·2 answers
  • (a) If a flea can jump straight up to a height of 0.440 m, what is its initial speed as it leaves the ground? (b) How long is it
    12·1 answer
  • lock of mass m2 is attached to a spring of force constant k and m1 . m2. If the system is released from rest, and the spring is
    7·1 answer
  • Convert 550 cm into m. Please show your work
    14·1 answer
  • Explain how Newton's third law is applied when a rocket ship is being launched?
    10·1 answer
  • Determine the density of an object that has a mass of 149.8 g and displaces 12.1 mL of water when placed in a graduated cylinder
    13·1 answer
  • All moving objects don’t have momentum<br> A. True<br> B. False
    11·2 answers
  • What is the danger to spacecraft and astronauts from micrometeoroids?
    13·1 answer
  • The key differences between rotational kinematics and translational kinematics is: A. Rotational kinematics must specify an axis
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!