The density of metal block in grams per cubic centimeter is 10.70 g/cm³.
Given,
Mass of metal block = 5.16 lb
1 lb = 453.592 g
5.26 lb = 2340.536 g
The volume of metal block = 14 in 3
1 in = 2.5 cm
1 in 3 = 15.625 cm³
14 in 3 = 218.75 cm³
Density is defined as the mass per unit volume of a substance. Or, it is the ratio of mass to the volume of the substance.
As we know,
Density = mass/volume
Or, density = 2340.536 / 218.75
Or, density = 10.70 g/cm³
Therefore, the density of the metal block is 10.70 g/cm³.
To learn more about the density, visit: brainly.com/question/15164682
#SPJ9
The answer would be 5.5g because you have to subtract 8.2 minus 2.7 and you get 5.5g so basically the answer is C.
Answer:
earth has a size of 6,371 km wich is greater than mars size 3,389.5 km
Explanation:
Answer/Explanation: Two atoms of oxygen form the basic oxygen molecule--the oxygen we breathe that is essential to life. The third oxygen atom can detach from the ozone molecule, and re-attach to molecules of other substances, thereby altering their chemical composition.
Answer:
∆H° rxn = - 93 kJ
Explanation:
Recall that a change in standard in enthalpy, ∆H°, can be calculated from the inventory of the energies, H, of the bonds broken minus bonds formed (H according to Hess Law.
We need to find in an appropiate reference table the bond energies for all the species in the reactions and then compute the result.
N₂ (g) + 3H₂ (g) ⇒ 2NH₃ (g)
1 N≡N = 1(945 kJ/mol) 3 H-H = 3 (432 kJ/mol) 6 N-H = 6 ( 389 kJ/mol)
∆H° rxn = ∑ H bonds broken - ∑ H bonds formed
∆H° rxn = [ 1(945 kJ) + 3 (432 kJ) ] - [ 6 (389 k J]
∆H° rxn = 2,241 kJ -2334 kJ = -93 kJ
be careful when reading values from the reference table since you will find listed N-N bond energy (single bond), but we have instead a triple bond, N≡N, we have to use this one .