Answer:
See the explanation below
Explanation:
Density is defined as the relationship between mass and volume, i.e. the following equation can be used:
density = m/v
where:
density [kg/m^3]
m = mass [kg]
v = volume [m^3]
If we change the volume of a body by reducing its size, its mass will also decrease proportionally with a density as seen in the equation.
m = density*v
To understand this concept more clearly, let's use the following example:
We know that the density of water is equal to 1000 [kg/m^3], that is, 1 cubic meter of water contains 1000 kilograms of water, using the equation.
1000 = m /1
m = 1000*1 = 1000 [kg]
Now if we have 500 kilograms of water, that would pass with the volume so that the density remains constant.
1000 = 500/v
v = 500/1000
v = 0.5 [m^3]
We can see that the volume of water has halved. Since the mass of water was reduced by half. That is, the relationship between mass and volume is proportional to the density of the material or substance.
The final velocity is 
The distance traveled by the ball at time t is 
The maximum distance traveled by the object is 
The given parameters;
initial velocity of the ball, u = 20 m/s
acceleration due to gravity, g = 9.8 m/s²
The final velocity can be calculate as;

The distance traveled by the ball at time t;

The maximum distance traveled by the object is calculated as;

Learn more here: brainly.com/question/16878713
Answer:
Increases
Explanation:
The kinetic energy _____ (Increses)
as the roller coaster goes downhill
Answer:
please give me brainlist and follow
Explanation:
The measuring sensitivity of liquid-in-glass thermometers increases with the amount of liquid in the thermometer. The more liquid there is, the more liquid will expand and rise in the glass tube. For this reason, liquid thermometers have a reservoir to increase the amount of liquid in the thermometer.
Answer:
The velocity after 2 seconds can be found through:
V = u +a*t
Where V is final velocity, u is initial velocity, a is acceleration and t is time.
V = 0 + 2* 2= 4 meters/second
The distance (s) can be found through:
V^2= u^2 +2*a* s
Where V is final velocity, u is initial velocity, a is acceleration.
4^2= 0^2 + 2 *2*s
16= 0 + 4s
s= 4 meters
Distance (s) can also be found through:
s= ut + 1/2 at^2
s= 0+ 1/2 *2*2^2= 1 *2*2
s= 4 meters
Explanation: