Answer:

Explanation:
According to the law of conservation of linear momentum, the total momentum of both pucks won't be changed regardless of their interaction if no external forces are acting on the system.
Being
and
the masses of pucks a and b respectively, the initial momentum of the system is

Since b is initially at rest

After the collision and being
and
the respective velocities, the total momentum is

Both momentums are equal, thus
Solving for 


The initial kinetic energy can be found as (provided puck b is at rest)


The final kinetic energy is


The change of kinetic energy is

<em>Anything</em> that's dropped through air is somewhat affected by air resistance. But, out of that list, the leaf and the balloon are the items that will be affected by air resistance enough so that you can plainly see it.
If you spend some time thinking about it, you can kind of understand why airplane wings and boat propellers are shaped more like leafs and balloons than like bricks and rocks.
Answer:
(a) I_A=1/12ML²
(b) I_B=1/3ML²
Explanation:
We know that the moment of inertia of a rod of mass M and lenght L about its center is 1/12ML².
(a) If the rod is bent exactly at its center, the distance from every point of the rod to the axis doesn't change. Since the moment of inertia depends on the distance of every mass to this axis, the moment of inertia remains the same. In other words, I_A=1/12ML².
(b) The two ends and the point where the two segments meet form an isorrectangle triangle. So the distance between the ends d can be calculated using the Pythagorean Theorem:

Next, the point where the two segments meet, the midpoint of the line connecting the two ends of the rod, and an end of the rod form another rectangle triangle, so we can calculate the distance between the two axis x using Pythagorean Theorem again:

Finally, using the Parallel Axis Theorem, we calculate I_B:

The period of a simple pendulum is given by:

where L is the length of the pendulum and

is the gravitational acceleration. As we can see, the period of a simple pendulum depends only on its length.
Answer:
The theory of plate tectonics explains how continental movements could occur. B. The theory of plate tectonics shows that continental movements could not have happened. C. The theory of plate tectonics tells us exactly where the continents were before Pangaea divided. D. The theory of plate tectonics shows that Pangaea was impossible, but .
Explanation: