Answer:
The amount of current that must flow through the wire for it to be suspended against gravity by magnetic force = 6.125 A
Explanation:
Force on a wire carrying current in an electric field is given by
F = (B)(I)(L) sin θ
For this question,
The magnetic force must match the weight of the wire.
F = mg
mg = (B)(I)(L) sin θ
(m/L)g = (B)(I) sin θ
Mass per unit length = 75 g/m = 0.075 kg/m
B = magnetic field = 0.12 T
I = ?
g = acceleration due to gravity = 9.8 m/s
θ = angle between wire's current direction and magnetic field = 90°
0.075 × 9.8 = 0.12 × I sin 90°
I = 0.075 × 9.8/0.12 = 6.125 A
The June solstice in the Northern hemisphere is the summer solstice. The June Solstice in the Southern hemisphere is the winter solstice. The summer solstice is equivalent to the longest day while the winter solstice is equivalent to the shortest day. Therefore on the local sky, when is the June solstice we have have the longest day (longest path of sun in the sky) in the Northern hemisphere and the shortest day (shortest path of sun in the sky) in the Southern hemisphere.
Answer:Same magnitude
Explanation:
When ball is dropped from shoulder height h then velocity at the bottom is given by

if it makes elastic collision then it will acquire the same velocity and riser up to the same height
If m is the mass of ball then impulse imparted is given by


Thus impulse imparted by gravity and Floor will have same magnitude of impulse but direction will be opposite to each other.
Question:
A 63.0 kg sprinter starts a race with an acceleration of 4.20m/s square. What is the net external force on him? If the sprinter from the previous problem accelerates at that rate for 20m, and then maintains that velocity for the remainder for the 100-m dash, what will be his time for the race?
Answer:
Time for the race will be t = 9.26 s
Explanation:
Given data:
As the sprinter starts the race so initial velocity = v₁ = 0
Distance = s₁ = 20 m
Acceleration = a = 4.20 ms⁻²
Distance = s₂ = 100 m
We first need to find the final velocity (v₂) of sprinter at the end of the first 20 meters.
Using 3rd equation of motion
(v₂)² - (v₁)² = 2as₁ = 2(4.2)(20)
v₂ = 12.96 ms⁻¹
Time for 20 m distance = t₁ = (v₂ - v ₁)/a
t₁ = 12.96/4.2 = 3.09 s
He ran the rest of the race at this velocity (12.96 m/s). Since has had already covered 20 meters, he has to cover 80 meters more to complete the 100 meter dash. So the time required to cover the 80 meters will be
Time for 100 m distance = t₂ = s₂/v₂
t₂ = 80/12.96 = 6.17 s
Total time = T = t₁ + t₂ = 3.09 + 6.17 = 9.26 s
T = 9.26 s
First of all Longitudinal waves is a matter in the medium that moves parallel to the direction of the wave travels.
1st example: sound travels parallel.
2nd example: when you talk you will here your voice again. because all the frequency bounce back to you.
In the other hand Transverse wave matter in the medium moves perpendicular to direction the wave travels.
For example: light is a good example of transverse wave.