T<span>he equation to be used here to determine the distance between two equipotential points is:
V = k * Q / r
where v is the voltage of the point, k is a constant, Q is charge of the point measured in coloumbs and r is the distance.
In this case, we can use ratio of proportions to determine the distance between the two points. in this respect,
Point 1:
V = k * Q / r = 290
r = k*Q/290 ; kQ = 290r
Point 2:
V = k * Q / R = 41
R = k*Q/41
from equation 10 kQ = 290r
R = 290/(41)= 7.07 m
The distance between the two points then is equal to 7.07 m.
</span>
Answer:
a)-1.014x
J
b)3.296 x
J
Explanation:
For Sphere A:
mass 'Ma'= 47kg
xa= 0
For sphere B:
mass 'Mb'= 110kg
xb=3.4m
a)the gravitational potential energy is given by
= -GMaMb/ d
= - 6.67 x
x 47 x 110/ 3.4 => -1.014x
J
b) at d= 0.8m (3.4-2.6) and
=-1.014x
J
The sum of potential and kinetic energies must be conserved as the energy is conserved.
+
=
+ 
As sphere starts from rest and sphere A is fixed at its place, therefore
is zero
=
+ 
The final potential energy is
= - GMaMb/d
Solving for '
'
=
+ GMaMb/d => -1.014x
+ 6.67 x
x 47 x 110/ 0.8
= 3.296 x
J
Answer:
Vf = 29.4 m/s
h = 44.1 m
Explanation:
Data:
- Initial Velocity (Vo) = 0 m/s
- Gravity (g) = 9.8 m/s²
- Time (t) = 3 s
- Final Velocity (Vf) = ?
- Height (h) = ?
==================================================================
Final Velocity
Use formula:
Replace:
Multiply:
==================================================================
Height
Use formula:
Replace:
Multiply time squared:
Simplify the s², and multiply in the numerator:
It divides:
What is the velocity when falling to the ground?
The final velocity is <u>29.4 meters per seconds.</u>
How high is the building?
The height of the building is <u>44.1 meters.</u>
The percentage of energy available to each organism is always 10 percent .
Answer:
For further investigation see also the most recent World Population Data ... and Latin America and the Caribbean, and the regions of Melanesia, ... While Germany's death rate exceeds its birth rate, its population ... Population growth accelerated.