The right answer would be
-20t+ 80
I think you almost got it.
At the top, the velocity only has horizontal component, so v=12 m/s is v_x, which is v*cos(theta), because v_x is constant, so the same when it was launched or now.
With the value of the initial speed (28 m/s, which is the total speed), you can set
v_x = v * cos( theta ) ---> 12 = 28*cos(theta) --> cos(theta)=12/28=3/7
or theta = 64.62 deg, it is D. Think about it. I hope you see it.
Answer:
B) Gets smaller
Explanation:
The difference of phase between current and voltage in a AC circuit is the phase angle and it depends on the value of Z ( circuit impedance)
Z = R + X where R is the resistive component and X the reactance component, which is due either to a presence of an inductor or a capacitor. In any case the total impedance depends on R the resistive, and the phase angle φ is:
tan⁻¹ φ = X/R
Have a look to a pure capactive circuit (we are talking about AC current) in this case current leads voltage by 90⁰. If we add a resistor in the circuit the current still will lead a voltage but in this condition the phase angle will be smaller,
If R increase, X/R decrease and tan⁻¹ φ also decrease
Answer:
We can cause delamination.
Explanation:
The reason why is because the probability of causing delamination increase considerably when we use Hole-filling fasteners. If we use a typical rivet, these tends to expands in order to fill the hole.
If we analyze the force applied by the expanded rod will cause that the matrial will be deteriorated and will cause that the material to delaminate around the edges of the hole and we can cause possible control and no protection to the material.
Answer:
The distance traveled during its acceleration, d = 214.38 m
Explanation:
Given,
The object's acceleration, a = -6.8 m/s²
The initial speed of the object, u = 54 m/s
The final speed of the object, v = 0
The acceleration of the object is given by the formula,
a = (v - u) / t m/s²
∴ t = (v - u) / a
= (0 - 54) / (-6.8)
= 7.94 s
The average velocity of the object,
V = (54 + 0)/2
= 27 m/s
The displacement of the object,
d = V x t meter
= 27 x 7.94
= 214.38 m
Hence, the distance the object traveled during that acceleration is, a = 214.38 m