First of all the kinetic energy is when the particles move in continuous random motion.
If the temperature is high the colliding particles will collide more. and if the temperature is low the colliding particles will collide less.
Low temperature result in low kinetic energy
High temperature result in high kinetic energy
Absolute zero is the point where where all molecules have no kinetic energy. It is a theoretical value (it has never been reached).
The Kelvin temperature scale is based on absolute zero being the lowest possible temperature that could theoretically be reached. That is why there is no such thing as a negative Kelvin temperature value.
Answer:
No, they will not change.
Explanation:
<u><em>PRIMARY </em></u>Waves Are Detected First Because They Move So Fast.
<u><em>RIGHT</em></u> Angles To The Direction of Movement.
A Kind Of Scale Used To Measure The Amount of Seismic Energy Released By An Earthquake <u><em>RICHTER SCALE</em></u>
energy is the correct answer to fill the blank bb :)
Answer:
3.86×10⁶ Newton/coulombs
Explaination:
Applying,
E = F/q....................... Equation 1
Where E = Electric Field, F = Force, q = charge.
From the question,
Given: F = 5.4×10⁻¹ N, q = -1.4×10⁻⁷ coulombs
Substitute these values into equation 1
E = 5.4×10⁻¹/ -1.4×10⁻⁷
E = -3.86×10⁶ Newtons/coulombs
Hence the magnitude of the electric field created by the
negative test charge is 3.86×10⁶ Newton/coulombs