Answer: 0.002 M
Explanation:
The balanced chemical equation for ionization of in water is:
According to stoichiometry :
1 mole of ionizes to give =2 mole of ions
0.001 mole of ionizes to give = mole of ions
Thus of a solution of 0.001 M aqueous sulfuric acid is 0.002 M
Your question isn't quite clear, but if you're wondering if a chemical is polar or non-polar, you simply draw a VSEPR sketch and draw arrows where the bonds are. Only draw arrows between atoms, NOT between an atom and a lone pair of electrons. The arrow should point to the most electronegative atom (you should be given an electronegativity scale). Afterwards, you add up the arrows as vectors, and look at the sum of the vectors. If the sum is zero (CH4 is a good example), the chemical is non-polar. If the sum is a vector, the chemical is polar (H2O, or water, is polar).
Answer: A chemical process must occur and then changes between the state of the reactants and the state of the products can be determined
Explanation: Enthalpy represents the sum of the energy of the system with the product of the pressure and volume of that system. As a thermodynamic property, it expresses the ability to release heat from the system. In fact, enthalpy tells us how much heat and work has changed during the chemical reaction under constant pressure. When measuring, measurements of the difference in enthalpy between the two states of the system is performed, before and after the chemical reaction, since total enthalpy can not be measured. This measurement of the enthalpy change can tell us, for example, whether the heat was released from the system during the reaction, or the system absorbed the heat.
False
Although we use many of their ideas to describe atoms today, such as the existence of a tiny, dense nucleus in an atom (proposed by Rutherford), or the notion that all atoms of an element are identical (proposed by Dalton), some of their ideas have been rejected by the modern theory of the atom.
For example, Thompson came up with the plum pudding model to describe an atom, which resembled a sphere of positive charge with electrons embedded in it. We know now, however, that atoms are mostly empty space with a tiny, dense nucleus.
Another example is Dalton's atomic theory, which stated that atoms are indivisible particles. However, this was disproved by the discovery of subatomic particles.