Answer:
Particles in a water wave exchange kinetic energy for potential energy. When particles in water become part of a wave, they start to move up or down. This means that kinetic energy (energy of movement) has been transferred to them
Explanation:
hope this helps u ....
<em>pls mark this as the brainliest...</em>
<span>Evaporation involves a liquid becoming a gas and sublimation is the change of a solid directly to a gas.Phase changes require either the addition of heat energy (melting, evaporation, and sublimation) or subtraction of heat energy (condensation and freezing.</span>
Answer:
An apple in free fall accelerates toward the Earth with a free fall acceleration, g. The force of the apple on the Earth also causes the Earth to accelerate toward the falling apple. By Newton's Third Law, the force of the Earth on the apple is exactly equal and opposite to the force of the apple on the Earth. By Newton,s Second law, the force of the Earth on the apple is equal to the mass of the apple times g , the accelerations due to gravity. And, the force of the the apple on the Earth is equal to the mass of the Earth times the acceleration of the Earth toward the apple. In conclusion, the magnitude of the forces are equal, or
F ( apple on the Earth) = F( the Earth on the apple) or
M( mass of the earth) x a( the acceleration of the earth toward the apple) = m(mass of the apple) x g( the acceleration of the apple toward the Earth) or
a = (m/M) g
Explanation:
Answer:
A) 
B) F = 1632.65 N
Explanation:
Given details
outside air speed is given as 
since inside air is atmospheric , 
a) By using bernoulli equation between outside and inside of flight


![\Delta P = \frac{1}{2} \rho[ v_2^2 -v_1^2]](https://tex.z-dn.net/?f=%5CDelta%20P%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Crho%5B%20v_2%5E2%20-v_1%5E2%5D)
![\Delta P = \frac{1}{2} 1.29 [ 150^2 - 0^2]](https://tex.z-dn.net/?f=%5CDelta%20P%20%3D%20%5Cfrac%7B1%7D%7B2%7D%201.29%20%5B%20150%5E2%20-%200%5E2%5D)

b) force exerted on window
Area of window 
We know that force is given as


F = 1632.65 N