Explanation:
a) The total volume equals the sum of the volumes.
500 = x + y
The total octane amount equals the sum of the octane amounts.
89(500) = 87x + 92y
44500 = 87x + 92y
b) desmos.com/calculator/ekegkzllqx
As x increases, y decreases.
c) Use substitution or elimination to solve the system of equations.
44500 = 87x + 92(500−x)
44500 = 87x + 46000 − 92x
5x = 1500
x = 300
y = 200
The required volumes are 300 gallons of 87 gasoline and 200 gallons of 92 gasoline.
Answer:
This doesn't represent an equilibrium state of stress
Explanation:
∝ = 1 , β = 1 , y = 1
x = 0 , y = 0 , z = 0 ( body forces given as 0 )
Attached is the detailed solution is and also the conditions for equilibrium
for a stress state to be equilibrium all three conditions has to meet the equilibrum condition as explained in the attached solution
Answer:
Time taken for the capacitor to charge to 0.75 of its maximum capacity = 2 × (Time take for the capacitor to charge to half of its capacity)
Explanation:
The charging of a capacitor/the build up of its voltage follows an exponential progression and is given by
V(t) = V₀ [1 - e⁻ᵏᵗ]
where k = (1/time constant)
when V(t) = V₀/2
(1/2) = 1 - e⁻ᵏᵗ
e⁻ᵏᵗ = 0.5
In e⁻ᵏᵗ = In 0.5 = - 0.693
-kt = - 0.693
kt = 0.693
t = (0.693/k)
Recall that k = (1/time constant)
Time to charge to half of max voltage = T(1/2)
T(1/2) = 0.693 (Time constant)
when V(t) = 0.75
0.75 = 1 - e⁻ᵏᵗ
e⁻ᵏᵗ = 0.25
In e⁻ᵏᵗ = In 0.25 = -1.386
-kt = - 1.386
kt = 1.386
t = 1.386(time constant) = 2 × 0.693(time constant)
Recall, T(1/2) = 0.693 (Time constant)
t = 2 × T(1/2)
Hope this Helps!!!
Answer:
Test code:
>>u=10;
>>g=9.8;
>>q=100;
>>m0=100;
>>vstar=10;
>>tstar=fzero_rocket_example(u, g, q, m0, vstar)
Explanation:
See attached image