Answer:
W= 8120 KJ
Explanation:
Given that
Process is isothermal ,it means that temperature of the gas will remain constant.
T₁=T₂ = 400 K
The change in the entropy given ΔS = 20.3 KJ/K
Lets take heat transfer is Q ,then entropy change can be written as

Now by putting the values

Q= 20.3 x 400 KJ
Q= 8120 KJ
The heat transfer ,Q= 8120 KJ
From first law of thermodynamics
Q = ΔU + W
ΔU =Change in the internal energy ,W=Work
Q=Heat transfer
For ideal gas ΔU = m Cv ΔT]
At constant temperature process ,ΔT= 0
That is why ΔU = 0
Q = ΔU + W
Q = 0+ W
Q=W= 8120 KJ
Work ,W= 8120 KJ
The professional ethics for computer engineers are:
- They will Contribute to society and to human well-being.
- They will Avoid harm.
- Be honest and trustworthy.
- They will be fair and take action that do to discriminate others.
<h3>What are the Characteristics of Code of Ethics?</h3>
The code of ethics are known to be a kind of a universal moral values, that is one that state that what a person expect of any given employee such as been trustworthy, respectful, responsible, and others.
Note that Rules of Practice, Professional Obligations and Codes of Ethics. are known to be put in place to avoid issues that may lead to conflict.
Therefore, i believe that As Engineering and Computing students, the respective professional bodies, Rules of Practice, Professional Obligations and Codes of Ethics are good and acts as a check and balance to us.
Therefore, The professional ethics for computer engineers are:
- They will Contribute to society and to human well-being.
- They will Avoid harm.
- Be honest and trustworthy.
- They will be fair and take action that do to discriminate others.
Learn more about Engineering rules from
brainly.com/question/17169621
#SPJ1
Answer:
The answer is "+9.05 kw"
Explanation:
In the given question some information is missing which can be given in the following attachment.
The solution to this question can be defined as follows:
let assume that flow is from 1 to 2 then
Q= 1kw
m=0.1 kg/s
From the steady flow energy equation is:
![m\{n_1+ \frac{v^2_1}{z}+ gz_1 \}+Q= m \{h_2+ \frac{v^2_2}{2}+ gz_2\}+w\\\\\ change \ energy\\\\0.1[1.005 \times 800]-1= 0.01[1.005\times 700]+w\\\\w= +9.05 \ kw\\\\](https://tex.z-dn.net/?f=m%5C%7Bn_1%2B%20%5Cfrac%7Bv%5E2_1%7D%7Bz%7D%2B%20gz_1%20%5C%7D%2BQ%3D%20m%20%5C%7Bh_2%2B%20%5Cfrac%7Bv%5E2_2%7D%7B2%7D%2B%20gz_2%5C%7D%2Bw%5C%5C%5C%5C%5C%20change%20%5C%20energy%5C%5C%5C%5C0.1%5B1.005%20%5Ctimes%20800%5D-1%3D%200.01%5B1.005%5Ctimes%20700%5D%2Bw%5C%5C%5C%5Cw%3D%20%2B9.05%20%5C%20kw%5C%5C%5C%5C)
If the sign of the work performed is positive, it means the work is done on the surrounding so, that the expected direction of the flow is right.
Answer:
Feedforward basically configured and used mainly to avoid errors in a control system entering or disrupting a control loop
Explanation:
Feedforward basically configured and used mainly to avoid errors in a control system entering or disrupting a control loop. Although Feedforward control seems to be a very attractive idea, it imposes a high responsibility on both the system developer and the operator to examine and consider mathematically the effect of disruptions on the process concerned.
example of feedforward is
Shower
which consist of following control points
Hear toilet flush (measurement)
Customize water to compensate
feedback refers to that point when water turns hot before the configuration changes