Answer:
Artefacts can influence our actions in several ways. They can be instruments, enabling and facilitating actions, where their presence affects the number and quality of the options for action available to us. They can also influence our actions in a morally more salient way, where their presence changes the likelihood that we will actually perform certain actions. Both kinds of influences are closely related, yet accounts of how they work have been developed largely independently, within different conceptual frameworks and for different purposes. In this paper I account for both kinds of influences within a single framework. Specifically, I develop a descriptive account of how the presence of artefacts affects what we actually do, which is based on a framework commonly used for normative investigations into how the presence of artefacts affects what we can do. This account describes the influence of artefacts on what we actually do in terms of the way facts about those artefacts alter our reasons for action. In developing this account, I will build on Dancy’s (2000a) account of practical reasoning. I will compare my account with two alternatives, those of Latour and Verbeek, and show how my account suggests a specification of their respective key concepts of prescription and invitation. Furthermore, I argue that my account helps us in analysing why the presence of artefacts sometimes fails to influence our actions, contrary to designer expectations or intentions.
When it comes to affecting human actions, it seems artefacts can play two roles. In their first role they can enable or facilitate human actions. Here, the presence of artefacts changes the number and quality of the options for action available to us.Footnote1 For example, their presence makes it possible for us to do things that we would not otherwise be able to do, and thereby adopt new goals, or helps us to do things we would otherwise be able to do, but in more time, with greater effort, etc
Explanation:
Technological artifacts are in general characterized narrowly as material objects made by (human) agents as means to achieve practical ends. ... Unintended by-products of making (e.g. sawdust) or of experiments (e.g. false positives in medical diagnostic tests) are not artifacts for Hilpinen.
Service brake system indicator is the warning that there is something wrong with the service brake system. Hence option f is correct.
<h3>
What is indicator?</h3>
Amber-colored indicator lights can be found at the front, back, and occasionally on the left and right sides of the vehicle. Whether you're turning left, right, or into oncoming traffic, you use your indicators to signal your planned change of direction.
When this light turns on, one of two things will happen. Either the parking brake is engaged or the hydraulic fluid (brake fluid) in the master cylinder is low. Your brakes are made up of a system of hydraulic oil-filled tubes called brake lines.
Thus, service brake system indicator is the warning that there is something wrong with the service brake system. Hence option f is correct.
To learn more about indicator, refer to the link below:
brainly.com/question/28093573
#SPJ1
Answer:
See explanation below.
Explanation:
For this case the program needs to take the inputs as P,r and n and the output would be as A and printed on the system. The code is:
# Inputs
P = float(input("Enter the present value : "))
r = float(input("Enter your APR : "))
n = float(input("Enter the number of years : ") )
# Output
A = P*(1 +(r/100))**n
print("The future values is:", A)
And the result obtained is:
Enter the present value : 1000
Enter your APR : 0.95
Enter the number of years : 5
The future values is: 1048.4111145526908
Answer:
The value of R is 10101
Explanation:
As per the given data
D = 1000100100
G = 100101
Redundant bit = 6-bits - 1-bit = 5-bits
No add fice zero to D
D = 100010010000000
Now calculate R as follow
R = D / G
R = 100010010000000 / 100101
R = 10101
Workings are attached with this question