1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatyana61 [14]
2 years ago
7

Military glorification through mosaics, relief carvings and triumphant arches are often associated with?

Engineering
1 answer:
emmasim [6.3K]2 years ago
8 0

Military glorification through mosaics, relief carvings and triumphant arches are often associated with roman architectural monument and is the correct choice.

<h3>What is a Monument?</h3>

This can be defined as a structure which is usually large and is used to commemorate the history of an influential person. This helps to serve as an example and also a reminder as to why the performance of good deeds are important

The use of military glorification through mosaics, relief carvings and triumphant arches were also often used by the Romans in other to commemorate war victories and the succession of a new ruler which is known as the emperor.

Read more about Roman monuments here brainly.com/question/15786258

#SPJ1

You might be interested in
Can someone help me with this maze shown below.
Gnoma [55]
We can’t see the maze
3 0
3 years ago
If a car sits out in the sun every day for a long time can light from the sun damage the car paint
Reika [66]

Answer:

i think yes it could make the color go lighter

Explanation:

6 0
3 years ago
Read 2 more answers
A heat engine that rejects waste heat to a sink at 520 R has a thermal efficiency of 35 percent and a second- law efficiency of
xeze [42]

Answer:

The source temperature is 1248 R.

Explanation:

Second law efficiency of the engine is the ratio of actual efficiency to the maximum possible efficiency that is reversible efficiency.

Given:  

Temperature of the heat sink is 520 R.

Second law efficiency is 60%.

Actual thermal efficiency is 35%.

Calculation:  

Step1

Reversible efficiency is calculated as follows:

\eta_{II}=\frac{\eta_{a}}{\eta_{rev}}

0.6=\frac{0.35}{\eta_{rev}}

\eta_{rev}=0.5834

Step2

Source temperature is calculated as follows:

\eta_{rev}=1-\frac{T_{L}}{T}

\eta_{rev}=1-\frac{520}{T}

0.5834=1-\frac{520}{T}

T = 1248 R.

The heat engine is shown below:

Thus, the source temperature is 1248 R.

6 0
3 years ago
How would you describe what would happen to methane if the primary bonds were to break?
erastova [34]

Answer:

All the bonds in methane (CH4CH4) are equivalent, and all have the same dissociation energy.

The product of the dissociation is methyl radical (CH3CH3). All the bonds in methyl radical are equivalent, and all have the same dissociation energy.

The product of that dissociation is methylene (CH2CH2). All the bonds in methylene are equivalent, and all have the same dissociation energy.

The product of that dissociation is methyne (CHCH) .

The C-H bonds in methane do not have the same dissociation energy as C-H bonds in methyl radical, which in turn do not have the same dissociation energy as the C-H bonds in methylene, which are again different from the C-H bond in methyne.

If (by some miracle) you were able to get all four bonds in methane to dissociate absolutely simultaneously, they would all show the same dissociation energy… but that energy, per bond broken, would be different than the energy required to break just one C-H bond in methane, because the products are different.

(In this case, it’s CH4→C+4HCH4→C+4H versus CH4→CH3+HCH4→CH3+H.)

To alter hydrocarbons you add enough energy to break a C-H bond. Why does only one bond break? What concentrates the energy on one C-H bond?

the weakest CH bond is the one that breaks. in plain alkanes it has to do with the molecular orbital interactions between neighboring carbon atoms. look at propane for example. the middle carbon has two C-C bonds, and each of those C-C bonds is strengthened by slight electron delocalization from the C-H bonds overlapping with the antibonding orbitals of the adjacent carbons.

since the C-H bonds on the middle carbon donate electron density to both of its neighbors, those two are weakest.

one of them will break preferentially.

which one actually breaks depends on the reaction conditions (kinetics). frankly it's whichever one ramdomly approaches a nucleophile first. when the nucleophile pulls of one of the H's, the other C-H bonds start to share (delocalize) the negative charge across the whole molecule. so while the middle C feels the majority of the negative charge character, the other two C's take on a fair amount as well...

by the way, alkanes don't really like to break and form anions like that.

a better example would be something like isopropyl iodide, where the C-I bond breaks and the I carries away the electron pair, forming a carbocation (also not particularly stable, but more so than the carbanion).

7 0
3 years ago
The viscosity of a fluid is 10 be measured by a viscometer constructed of two 75-cm-long concentric cylinders. The outer diamete
a_sh-v [17]

Answer:

0.023 Pa*s

Explanation:

The surface area of the side of the inner cylinder is:

A = π*d*l

A = π*0.15*0.75 = 0.35 m^2

At 200 rpm the inner cylinder has a tangential speed of:

u = w * r

u = w * d/2

w = 200 rpm * 2π / 60 = 20.9 rad/s

u = 20.9 * 0.15 / 2 = 1.57 m/s

The torque is of 0.8 N*m, this means that the force is:

T = F * r

F = T / r

F = 2*T / d

For Newtoninan fluids with two plates moving respect of each other with a  fluid between the viscous friction force would be:

F = μ*A*u / y

Where

μ: viscocity

y: separation between pates

A: surface area of the plates

Then:

2*T / d = μ*A*u/y

Rearranging:

μ = 2*T*y / (d*A*u)

μ = 2*0.8*0.0012 / (0.15*0.35*1.57) = 0.023 Pa*s

5 0
3 years ago
Other questions:
  • Describe three advantages and three disadvantages of JIT?
    12·1 answer
  • Project 8:The Harris-Benedict equation estimates the number of calories your body needs to maintain your weight if you do no exe
    5·1 answer
  • Consider a voltage v = Vdc + vac where Vdc = a constant and the average value of vac = 0. Apply the integral definition of RMS t
    7·1 answer
  • What organization which fire codes
    13·2 answers
  • Mobility refers to the ability to?
    12·1 answer
  • A 300-ft long section of a steam pipe with an outside diameter of 4 in passes through an open space at 50oF. The average tempera
    12·1 answer
  • 12. Never spray brakes with a high-pressure stream of water or air because it could blow asbestos fibers into the air.
    8·1 answer
  • Engine horsepower decreases ________% for every___________feet above sea level.
    9·1 answer
  • Which of the following requires formwork?
    12·1 answer
  • How much does it cost to replace a roof on a 2,200 square foot house.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!