I'll be happy to solve the problem using the information that
you gave in the question, but I have to tell you that this wave
is not infrared light.
If it was a wave of infrared, then its speed would be close
to 300,000,000 m/s, not 6 m/s, and its wavelength would be
less than 0.001 meter, not 12 meters.
For the wave you described . . .
Frequency = (speed) / (wavelength)
= (6 m/s) / (12 m)
= 0.5 / sec
= 0.5 Hz .
(If it were an infrared wave, then its frequency would be
greater than 300,000,000,000 Hz.)
Answer:
43.16°
Explanation:
λ = Wavelength = 1.4×10⁻¹⁰ m
θ₁ = 20°
n can be any integer
d = distance between the two slits
Since for the first bright fringe, n₁ = 1
n₂ = 2 for second order line
The relation between the distance of the slits and the angle through which it is passed is:
dsinθ=nλ
As d and λ are constant

∴ Angle by which the second order line appear is 43.16°
It's called the periodic table because it arranges the elements the into repeating sets known as periods. this is defined by the <span>covalence of an element and the number of electrons i has in its outermost shell. I feel the the Best answer would be B. sorry if im wrong but i hope i helped :)</span>
The concave mirror is a spherical-shaped mirror that has an inner curved surface. Hence, option (4) is correct.
What is a concave mirror?
The concave mirrors are spherical-shaped mirrors that are painted on the outward surface. It is also known as the converging mirror, having the recessed inner reflecting surface.
- The concave mirrors are generally used for the purpose to focus the light. For that, they might have a reflecting surface, curved inwards, and the reflection of light is limited to the single focal point.
- The reflecting surface of the concave mirror has its vertex or midpoint lying farther away from the objects than the edges.
Thus, we can conclude that the surface of the concave mirror is curved inward. Hence, option (4) is correct.
Learn more about the concave mirror here:
brainly.com/question/13300307