(a) The net flux through the coil is zero.
In fact, the magnetic field generated by the wire forms concentric circles around the wire. The wire is placed along the diameter of the coil, so we can imagine as it divides the coil into two emisphere. Therefore, the magnetic field of the wire is perpendicular to the plane of the coil, but the direction of the field is opposite in the two emispheres. Since the two emispheres have same area, then the magnetic fluxes in the two emispheres are equal but opposite in sign, and so they cancel out when summing them together to find the net flux.
(b) If the wire passes through the center of the coil but it is perpendicular to the plane of the wire, the net flux through the coil is still zero.
In fact, the magnetic field generated by the wire forms concentric lines around the wire, so it is parallel to the plane of the coil. But the flux is equal to
where
is the angle between the direction of the magnetic field and the perpendicular to the plane of the coil, so in this case
and so the cosine is zero, therefore the net flux is zero.
Answer:
Explanation:
Initial velocity , u = 30 m/s
final velocity , v = 10 m/s
time , t = 5 seconds
1. Acceleration = v - u / t
= 10 - 30 / 5
= -20 / 5
= <u><em>- 4 m/s</em></u>
Answer:
why compasses point towards the north and south poles of the earth.
Explanation:
hope it helps!!
Answer:
The gazelles top speed is 27.3 m/s.
Explanation:
Given that,
Acceleration = 4.2 m/s²
Time = 6.5 s
Suppose we need to find the gazelles top speed
The speed is equal to the product of acceleration and time.
We need to calculate the gazelles top speed
Using formula of speed
Where, v = speed
a = acceleration
t = time
Put the value into the formula
Hence, The gazelles top speed is 27.3 m/s.