After finding acceleration, it is found that 0.02 N of force is acting on the marble
<h3>
What is Force ?</h3>
Force can simply be defined as a pull or push. It is the product of mass and acceleration of the object. It is a vector quantity and it is measured in Newton.
Given that a steel marble with 0.05 kg of mass starts from rest and rolls down a ramp. It travels 0.25 m in 1.2 seconds.
The parameters to consider are;
Before we find the force acting on the marble, let us first find the acceleration by using the formula: s = ut + 1/2at²
Substitute all the parameters into the formula
0.25 = 0 + 1/2 × a × 1.2²
0.25 = 1/2 × a × 1.44
0.25 = 0.72a
a = 0.25/0.72
a = 0.35 m/s²
The force acting on the marble will be ;
F = ma
F = 0.05 × 0.35
F = 0.017
F = 0.02 N
Therefore, the force acting on the marble is 0.02 N
Learn more about Force here: brainly.com/question/388851
#SPJ1
By definition, acceleration is the change in velocity per change of time. As time passes by, the time increases in value. So, when the acceleration is decreasing while the time is increasing, then that means that the change of velocity is also decreasing with time. So, optimally, the initial velocity and the velocity at any time are very relatively close to each other,
Answer:
Height, H = 25.04 meters
Explanation:
Initially the ball is at rest, u = 0
Time taken to fall to the ground, t = 2.261 s
Let H is the height from which the ball is released. It can be calculated using the second equation of motion as :

Here, a = g
H = 25.04 meters
So, the ball is released form a height of 25.04 meters. Hence, this is the required solution.
Answer:0.25 times
Explanation:
Given
Distance of satellite from earth surface=Radius of earth
Force on the satellite is F=mg'
where g'=acceleration due to gravity at that point
Distance from center of Earth=R+R=2R
Gravitational Force is given by

Force 
Force on earth surface 
Divide 1 and 2 we get

Answer:
b
Explanation:
friction needs two objects
the two objects need to touch each other
the two objects need to either have relative movement or, tend to have relative movement urge. (kinetic friction or static friction)