B.
It can go from very hot to very cold, it depends on the area of the moon and where the sunlight hits.
Answer:

Explanation:
From frequency of oscillation

Initially with the suspended string, the above equation is correct for the relation, hence

where k is force constant and m is the mass
When the spring is cut into half, by physics, the force constant will be doubled as they are inversely proportional

Employing f2/ f1, we have

The inflated balloon shrinks when it is placed in an ice bath with no change in atmospheric pressure.
<u>Explanation:</u>
When the inflated balloon is subjected to an ice bath, it shrinks. This is due to the fact that smaller volume gets occupied by the air/gas inside the balloon as the temperature decreases. Hence, causes the balloon walls to collapse.
An ice bath also lowers the overall air temperature of the balloon inside. As the temperature decreases, the air molecules move more slowly and with lower energy. Because of the particle's lower energy, their collisions with the walls are not enough to keep the inflated balloon.
The question is incomplete, the complete question is;
Eli states that sodium phosphate is a mixture because it is composed of both sodium ions and phosphate ions. Which is the best analysis of Eli’s statement? It is correct because each ion is a pure substance, so sodium phosphate is made up of two pure substances. It is correct because the composition of sodium phosphate changes depending on the sample. It is incorrect because sodium phosphate is a compound that has a single composition. It is incorrect because the two types of ions in sodium phosphate cannot be seen.
Answer:
It is incorrect because sodium phosphate is a compound that has a single composition
Explanation:
A compound is a neutral substance made up of two or more atoms which are chemically combined together.
Ionic substances are made up of ions. These ions are not separate entities, they are part of the compound.
Hence, Eli's statement is incorrect because sodium phosphate is a compound that has a single composition.