Answer: (B) Pressure is due to the collisions of the gas particles with the walls of the container.
Option B helps to explain the factor behind gas collision under high pressure.
Explanation: Kinetic molecular theory explains the behaviour and movement of gas particles when they are in motion. It states that gas particles are always in continuous motion and are perfectly elastic in nature.
Kinetic molecular theory can be explained using both Boyle's law and Charles's law.
•Few Assumptions of Kinetic Molecular Theory.
1. Gas particles are always in motion and they collide with the walls of their container.
2. The space occupied by a gas particles is negligible in comparison to the volume of the gas
Answer:
Noble gases, atoms which have complete filled outer orbits.
Explanation:
SInce, you have given no options elements like Neon, Helium,etc
Answer:
The volume of helium at 25.0 °C is 60.3 cm³.
Explanation:
In order to work with ideal gases we need to consider absolute temperatures (Kelvin). To convert Celsius to Kelvin we use the following expression:
K = °C + 273.15
The initial and final temperatures are:
T₁ = 25.0 + 273.15 = 298.2 K
T₂ = -196.0 + 273.15 = 77.2 K
The volume at 77.2 K is V₂ = 15.6 cm³. To calculate V₁ in isobaric conditions we can use Charle's Law.

Answer:
V of Sulfur tetrafluoride is 17.2 L
Explanation:
Given data;
T = -6°C = 267K [1° C = 273 K]
n = 786 mmol of SF4 which is 0.786 mol
P = 1 atm
from ideal gas law we have
PV = nRT
where n is mole, R is gas constant, V is volume


V of Sulfur tetrafluoride is 17.2 L