Great question, but I believe you are mixing up atomic number with mass number. Assuming you are, 12.011 amu is the average mass of a carbon atom. For carbon, it can come in three forms: carbon-12, carbon-13, carbon-14. The number following carbon is the mass number of that particular carbon "isotope". The reason the average is so close to 12 is because carbon-12 is by far the most common, so the average should be (and is) very close to 12. Therefore, 12.011 is a weighted average of all carbon molecules, and carbon-14 is a particular carbon molecule that weighs 14 amu.
Answer:
<em>1</em><em>.</em><em>Capillary action is important for moving water (and all of the things that are dissolved in it) around. </em>
<em>2</em><em>.</em><em>the pattern formed on an adsorbent medium by the layers of components separated by chromatography. </em>
Explanation:
hope this help you
Answer:
A. The gas molecules possess kinetic energy.
Explanation:
The characteristics of the Ideal gases are given by the Kinetic Theory of gases which are as follows:-
Gases consist of particles in constant, random motion. They continue in a straight line until they collide with something—usually each other or the walls of their container.
Particles are point masses with no volume. The particles are so small compared to the space between them, that we do not consider their size in ideal gases.
No molecular forces are at work. This means that there is no attraction or repulsion between the particles.
Gas pressure is due to the molecules colliding with the walls
I think that is called a Metamorphic rock.
Answer:
Na is the element from the second period that has the largest atomic radius
Explanation:
The atomic radius is a chemist property from the periodic table. It is decreased when we move in a period from the periodic, so the element in the second period that has the largest radius is Na, and the shortest, the Ar
The atomic radius indicates the distance between the nucleus and the outermost valence layer. In the periods it decreases with increasing Atomic Number, to the right, due to the attraction that the nucleus exerts on the electrons of the outermost orbitals, thus decreasing the core-electron distance.