Help????? You need to write as if you are Dmitri Mendeleev and you have just made your proposed version of the periodic table. You need to write to the Royal Society of Chemistry in London explaining:
• Who you are
• What your periodic table is like, the groups, elements and features
• Why you think your periodic table is correct
• How you have built on the work of others or why you think their work is not
correct
Answer:
The acid-base reaction produces glycine reduction, and hence the increase of glycine pH.
Explanation:
The glycine is an amino acid with the following chemical formula:
NH₂CH₂COOH
The COOH functional group is what gives the acid properties in the molecule.
Hence, when NaOH is added to glycine an acid-base reaction takes place in which COOH reacts with the NaOH added:
NH₂CH₂COOH + OH⁻ ⇄ NH₂CH₂COO⁻ + H₂O
The glycine concentration starts to shift to its ion form (NH₂CH₂COO⁻) because of the reaction with NaOH, that is why the pH glycine increases when NaOH is added.
Therefore, the acid-base reaction produces glycine reduction, and hence the increase of glycine pH.
I hope it helps you!
HEY DEAR..
The particles of light known as photon.
HOPE ITS HELPFULL
Answer:
The less mass in a given volume of air the less dense the air is going to be.
Explanation:
Sodium hydroxide completely ionizes in water to produce sodium ions and hydroxide ions. Hydroxide ions are in excess and neutralize all acetic acid added by the following ionic equation:
The mixture would contain
if undergoes no hydrolysis; the solution is of volume after the mixing. The two species would thus be of concentration and , respectively.
Construct a RICE table for the hydrolysis of under a basic aqueous environment (with a negligible hydronium concentration.)
The question supplied the <em>acid</em> dissociation constant for acetic acid ; however, calculating the hydrolysis equilibrium taking place in this basic mixture requires the <em>base</em> dissociation constant for its conjugate base, . The following relationship relates the two quantities:
... where the water self-ionization constant under standard conditions. Thus . By the definition of :