Answer
I think most see black and white.
Answer:
350.72 m/s
Explanation:
Formula for velocity of wave is;
v = fλ
Where;
v is speed
f is frequency
λ is wavelength
We are given;
f = 512 Hz
λ = 0.685 m
Thus;
v = 512 × 0.685
v = 350.72 m/s
In general,
Power = (energy moved) / (time to move the energy) .
If it's mechanical power, then
Power = (work done) / (time to do the work) .
If it's electrical power, then it can be any one of these:
Power = (volts) x (amperes)
Power = (volts)² / (resistance, ohms)
Power = (amperes)² x (resistance, ohms) .
Whatever kind of energy you're dealing with, power always
turns out to be
(amount of energy produced, used, or moved)
divided by
(time taken to produce, use, or move the energy) .
The frictional force while the mass is sliding will be 46.2 N.
<h3>What is friction force?</h3>
Opposition forces on the surface cause heat loss during the motion of an object known as the friction force.
Given data:
m(mass)= 10.0-kg
Θ (Inclination angle)=25.0o
Coefficient of sliding friction,
=0.520
Coefficient of static friction,
The friction force, F=?
Resolve the force in the inclined plane;

Hence, the frictional force while the mass is sliding will be 46.2 N.
To know more about friction force refer to the link;
brainly.com/question/1714663
#SPJ1
The water pressure on the first floor must be 455 PSI in order to push the water to the 13th floor at the given pressure.
The given parameters;
- <em>Pressure on the 13 th floor, P₁ = 35 PSI</em>
- <em>Distance between each floor, d = 10 ft</em>
The vertical pressure of the water is calculated as follows;

The vertical height of the first floor from the 13th floor = 130 ft
The vertical height of the 13 ft floor = 10 ft

Thus, the water pressure on the first floor must be 455 PSI in order to push the water to the 13th floor at the given pressure.
Learn more about vertical height and pressure here: brainly.com/question/15691554