Hiii,so the problem is ♀️
Complete Question
A sample of aluminum, which has a specific heat capacity of 0.897 JB loc ! is put into a calorimeter (see sketch at right) that contains 200.0 g of water. The aluminum sample starts off at 85.6 °C and the temperature of the water starts off at 16.0 °C. When the temperature of the water stops changing it's 20.1 °C. The pressure remains constant at 1 atm. Calculate the mass of the aluminum sample.
Answer:

Explanation:
From the question we are told that:
Heat Capacity 
Mass of water 
Initial Temperature of Aluminium 
Initial Temperature of Water 
Final Temperature of Water 
Generally
Heat loss=Heat Gain
Therefore


Paid sponsorship by a company
<span>The correct answer is A, the ligt-dependent reactions. These reactions are responsible for the production of glucose molecules, by the utilization of carbon dioxide, and water along with the sunlight. Glucose is then broken down during resiration process, for the production of ATP in mitochondria.</span><span />
The molarity of the stock solution is 1.25 M.
<u>Explanation:</u>
We have to find the molarity of the stock solution using the law of volumetric analysis as,
V1M1 = V2M2
V1 = 150 ml
M1 = 0.5 M
V2 = 60 ml
M2 = ?
The above equation can be rearranged to get M2 as,
M2 = 
Plugin the values as,
M2 = 
= 1.25 M
So the molarity of the stock solution is 1.25 M.