Actually, we can answer the problem even without the first statement. All we have to do is write the reaction for the production of sulfur trioxide.
2 S + 3 O₂ → 2 SO₃
The stoichiometric calculations is as follows:
7 g S * 1 mol/32.06 g S = 0.218 mol S
Moles O₂ needed = 0.218 mol S * 3 mol O₂/2 mol S = 0.3275 mol O₂
Since the molar mas of O₂ is 32 g/mol,
Mass of O₂ needed = 0.3275 mol O₂ * 32 g/mol = 10.48 g O₂
Answer:
A Graduated Cylinder has a limited round and hollow shape with each stamped line demonstrating the volume of fluid being estimated. While they are commonly more exact and exact than lab flagons and recepticles, they ought not be utilized to perform volumetric examination.
If an atom has 2 protons, then it must also have 2 electrons for there to be no charge. An extra electron will cause for you to have a negative charge, and if you have more protons than electrons, then you will have a positive charge. :)
Answer:
Explanation:
according to balance chemical equation
3 A2 moles produced 2 moles of A3B
so 12 moles A2 will produced moles of A3B= 12*2/3=24/3= 8
therefore 12 moles of A2 produced 8 moles of A3B
Actually, we can answer the problem even without the first statement. All we have to do is write the reaction for the production of sulfur trioxide.
2 S + 3 O₂ → 2 SO₃
The stoichiometric calculations is as follows:
6 g S * 1 mol/32.06 g S = 0.187 mol S
Moles O₂ needed = 0.187 mol S * 3 mol O₂/2 mol S = 0.2805 mol O₂
Since the molar mas of O₂ is 32 g/mol,
Mass of O₂ needed = 0.2805 mol O₂ * 32 g/mol = 8.976 g O₂