Answer:
Acceleration, 
Explanation:
It is given that,
Separation between the protons, 
Charge on protons, 
Mass of protons, 
We need to find the acceleration of two isolated protons. It can be calculated by equating electric force between protons and force due to motion as :


So, the acceleration of two isolated protons is
. Hence, this is the required solution.
Answer:
w = 4,786 rad / s
, f = 0.76176 Hz
Explanation:
For this problem let's use the concept of angular momentum
L = I w
The system is formed by the two discs, during the impact the system remains isolated, we have the forces are internal, this implies that the external torque is zero and the angular momentum is conserved
Initial Before sticking
L₀ = 0 + I₂ w₂
Final after coupling
= (I₁ + I₂) w
The moments of inertia of a disk with an axis of rotation in its center are
I = ½ M R²
How the moment is preserved
L₀ = 
I₂ w₂ = (I₁ + I₂) w
w = w₂ I₂ / (I₁ + I₂)
Let's reduce the units to the SI System
d₁ = 60 cm = 0.60 m
d₂ = 40 cm = 0.40 m
f₂ = 200 min-1 (1 min / 60 s) = 3.33 Hz
Angular velocity and frequency are related.
w₂ = 2 π f₂
w₂ = 2π 3.33
w₂ = 20.94 rad / s
Let's replace
w = w₂ (½ M₂ R₂²) / (½ M₁ R₁² + ½ M₂ R₂²)
w = w₂ M₂ R₂² / (M₁ R₁² + M₂ R₂²)
Let's calculate
w = 20.94 8 0.40² / (12 0.60² + 8 0.40²)
w = 20.94 1.28 / 5.6
w = 4,786 rad / s
Angular velocity and frequency are related.
w = 2π f
f = w / 2π
f = 4.786 / 2π
f = 0.76176 Hz
Answer:
It would point up.
Explanation:
Since I am at the earth's geographic north magnetic pole, the place on the earth's surface that compasses point toward, the north pole of the compass would also point towards the earth's geographic north magnetic pole, since all other compasses point toward there.
Since the compass is free to swivel in any direction, the compass would point up, since it is at the earth's geographic north magnetic pole, the place on the earth's surface that compasses point toward.
So, the compass would point up.
Answer:
C: Variation in the value of g as the pendulum bob moves along its arc.
Explanation:
The formula for period of a simple pendulum is given by;
T = 2π√(L/g)
Where;
L is length
g is acceleration due to gravity
Now, from this period equation, it is clear that the only thing that can affect the period of a simple pendulum are changes to its length and acceleration due to gravity.
Looking at the options, the only one that talks about either the length or gravity as being potential causes of the error is option C