The form of heat transfer taking place in the crust of the Earth would be Convection.
48.3 g AgNO3 / 169.9 g/mol = 0.284 moles AgNO3
0.284 mol AgNO3 X (1 mol Ag2CrO4/2 mol AgNO3) = 0.142 mol Ag2CrO4
0.142 mol Ag2CrO4 X 331.7 g/mol = 47.1 g Ag2CrO4
<span>Answer: 17.8 cm
</span>
<span>Explanation:
</span>
<span>1) Since temperature is constant, you use Boyle's law:
</span>
<span>PV = constant => P₁V₁ = P₂V₂
</span><span>=> V₁/V₂ = P₂/P₁</span>
<span>
2) Since the ballon is spherical:
</span><span>V = (4/3)π(r)³</span>
<span>
Therefore, V₁/V₂ = (r₁)³ / (r₂)³
</span>
<span>3) Replacing in the equation V₁/V₂ = P₂/P₁:
</span><span><span>(r₁)³ / (r₂)³ </span>= P₂/P₁</span>
<span>
And you can solve for r₂: (r₂)³ = (P₁/P₂) x (r₁)³
</span>(r₂)³ = (1.0 atm / 0.87 atm) x (17 cm)³ = 5,647.13 cm³
<span>
r₂ = 17.8 cm</span>
a. t=0.553 s
b. vox(horizontal speed) = 3.62 m/s
<h3>Further explanation</h3>
Given
h = 1.5 m
x = 2 m
Required
a. time
b. vo=initial speed
Solution
Free fall motion
a. h = 1/2 gt²(vertical motion=h=voyt+1/2gt²⇒voy = 0)

t = √2h/g
t = √2.1.5/9.8
t=0.553 s
b. x=vox.t(horizontal motion)

vox=x/t
vox=2/0.553
vox=3.62 m/s