Complete Question:
A metal plate of 400 mm in length, 200mm in width and 30 mm in depth is to be machined by orthogonal cutting using a tool of width 5mm and a depth of cut of 0.5 mm. Estimate the minimum time required to reduce the depth of the plate by 20 mm if the tool moves at 400 mm per second.
Answer:
26 mins 40 secs
Explanation:
Reduction in depth, Δd = 20 mm
Depth of cut, 
Number of passes necessary for this reduction, 
n = 20/0.5
n = 40 passes
Tool width, w = 5 mm
Width of metal plate, W = 200 mm
For a reduction in the depth per pass, tool will travel W/w = 200/5 = 40 times
Speed of tool, v = 100 mm/s

minimum time required to reduce the depth of the plate by 20 mm:
number of passes * Time/pass
n * Time/pass
40 * 40
1600 = 26 mins 40 secs
Answer:
The Debye temperature for aluminum is 375.2361 K
Explanation:
Molecular weight of aluminum=26.98 g/mol
T=15 K
The mathematical equation for the specific heat and the absolute temperature is:

Substituting in the expression of the question:


Here

Replacing:

Answer:
Explanation:
% Clears variables and screen
clear; clc
% Asks user for input
n = input('Total number of objects: ');
r = input('Size of subgroup: ');
% Computes and displays permutation according to basic formulas
p = 1;
for i = n - r + 1 : n
p = p*i;
end
str1 = [num2str(p) ' permutations'];
disp(str1)
% Computes and displays combinations according to basic formulas
str2 = [num2str(p/factorial(r)) ' combinations'];
disp(str2)
=================================================================================
Example: check
How many permutations and combinations can be made of the 15 alphabets, taking four at a time?
The answer is:
32760 permutations
1365 combinations
==================================================================================
Answer:
I hope this helps the tops of the waves are close together
Answer:
The natural angular frequency of the rod is 53.56 rad/sec
Explanation:
Since the beam is free at one end and fixed at the other hence the beam is a cantilevered beam as shown in the attached figure
We know that when a unit force is placed at the end of a cantilever the displacement of the free end is given by

Hence we can write

Comparing with the standard spring equation
we find the cantilever analogous to spring with 
Now the angular frequency of a spring is given by
where
'm' is the mass of the load
Thus applying values we get
