Answer:
2.029×10^-18 J
Explanation:
E=hv
so
E=(3.06×10^15)*(6.63×10^-34)
E=2.029×10^-18 J
Answer:
r = 2161.9 m
Explanation:
Aerodynamic lift(L) is perpendicular to the wing, which is tilted 40 degrees to the horizontal.
Since the plane is moving in a horizontal circle, the vertical component of the lift must cancel the weight W of the airplane, but the horizontal component is the centripetal force that keeps it in a circle.
L is perpendicular to wing at angle θ with respect to horizontal
Thus,
Vertical component of lift is:
L cosθ = W = mg
Thus, m = L cosθ / g - - - - (eq1)
Horizontal component of lift is:
L sinθ = centripetal force = mv² / r - - - - (eq2)
Combining equations 1 and 2,we have;
L sinθ = (L cosθ / g)(v² / r)
L cancels out on both sides to give;
tanθ = v²/ rg
r = v² / (g tanθ)
We are given;
velocity; v = 480 km/hr = 480 x 10/36 = 133.33 m/s
r = 133.33²/[(9.8) tan(40)] = 2161.9 m
E=hf C=wavelength*F
E=hC/wavelength
E=(6.626*10^-34)*(3.00*10^8)/670*10^-9
E=(6.626*10^-34)*(3.00*10^8)/450*10^-9
Explanation:
Since the balloon is not accelerating means that the net force on the balloon is zero. This implies that the weight of balloon must be equal to the buoyant force on balloon.
Hence, the buoyant force equals the weight of air displaced by the balloon, also 20,000 N.
Weight of the air displaced = density of air × volume
The density of air at 1 atm pressure and 20º C is 1.2 kg/m³
the volume V = 20,000/(1.2×9.8) = 1700 m³
Answer:
True
True statement:
Because pigment molecules absorb solar energy and thylakoids are pigment molecules