1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dimaraw [331]
3 years ago
15

A 1,000 kg car is travelling at 6.5 m/s to the North. A 3,500 kg truck is travelling South at the same velocity. What is the tot

al momentum of the two vehicles (don’t forget to assign a NEGATIVE velocity to one of the vehicles, because they are travelling in opposite directions)
Please answer ASAP
Physics
1 answer:
Molodets [167]3 years ago
3 0

Answer:

16250 kgm/s due south

Explanation:

Applying,

M = mv................. Equation 1

Where M = momentum, m = mass, v = velocity.

From the car,

Given: m = 1000 kg, v = 6.5 m/s

Substitute these values into equation 1

M = 1000(6.5)

M = 6500 kgm/s

For the truck,

Given: m = 3500 kg, v = 6.5 m/s

Substitute these values into equation 1

M' = 3500(6.5)

M' = 22750 kgm/s.

Assuming South to be negative direction,

From the question,

Total momentum of the two vehicles = (6500-22750)

Total momentum of the two vehicles = -16250 kgm/s

Hence the total momentum of the two vehicles is 16250 kgm/s due south

You might be interested in
What are the names of the 4 types of fronts? How are they created?
jeka57 [31]

Answer:

Stationary Front, warm front, cold front, Occluded Front.

Explanation:

Stationary Front. When the surface position of a front does not change (when two air masses are unable to push against each other; a draw), a stationary front is formed.

cold front is the leading edge of a cooler mass of air at ground level that replaces a warmer mass of air and lies within a pronounced surface trough of low pressure. It often forms behind an extratropical cyclone (to the west in the Northern Hemisphere, to the east in the Southern), at the leading edge of its cold air advection pattern—known as the cyclone's dry "conveyor belt" flow. Temperature differences across the boundary can exceed 30 °C (86 °F) from one side to the other. When enough moisture is present, rain can occur along the boundary. If there is significant instability along the boundary, a narrow line of thunderstorms can form along the frontal zone. If instability is weak, a broad shield of rain can move in behind the front, and evaporative cooling of the rain can increase the temperature difference across the front. Cold fronts are stronger in the fall and spring transition seasons and weakest during the summer.

A warm front is a density discontinuity located at the leading edge of a homogeneous warm air mass, and is typically located on the equator-facing edge of an isotherm gradient. Warm fronts lie within broader troughs of low pressure than cold fronts, and move more slowly than the cold fronts which usually follow because cold air is denser and less easy to remove from the Earth's surface. This also forces temperature differences across warm fronts to be broader in scale. Clouds ahead of the warm front are mostly stratiform, and rainfall gradually increases as the front approaches. Fog can also occur preceding a warm frontal passage. Clearing and warming is usually rapid after frontal passage. If the warm air mass is unstable, thunderstorms may be embedded among the stratiform clouds ahead of the front, and after frontal passage thundershowers may continue. On weather maps, the surface location of a warm front is marked with a red line of semicircles pointing in the direction of travel.

In meteorology, an occluded front is a weather front formed during the process of cyclogenesis. The classical view of an occluded front is that they are formed when a cold front overtakes a warm front, such that the warm air is separated (occluded) from the cyclone center at the surface. The point where the warm front becomes the occluded front is called the triple point; a new area of low-pressure that develops at this point is called a triple-point low. A more modern view of the formation process suggests that occluded fronts form directly during the wrap-up of the baroclinic zone during cyclogenesis, and then lengthen due to flow deformation and rotation around the cyclone.

3 0
2 years ago
Read 2 more answers
A 50.6 g ball of copper has a net charge of 1.6 µc. what fraction of the copper's electrons have been removed? (each copper atom
Fynjy0 [20]
First figure out how many atoms you have with Avogadro's number.  Since there are 63.5 grams/mol and you have 50.6 grams, you have (50.6/63.5)6.022E23=4.7986E23 atoms.  Since there are 29 protons per atom, there are also 29 electrons per atom, so you should have a total of
29*4.7986E23=1.3916E25 electrons.
Since there is a positive charge you know some of these electrons are missing.  How many are missing can be found by dividing the charge you have by the charge on the electron:  1.6E-6/1.6022E-19 = 9.98627E12 electrons are missing.  
Now take the ratio of what is missing to what there should be:
9.98627E12/1.3916E25 = 7.1760873E-13
5 0
3 years ago
Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 4 MPa, 500◦C, and 80 m/s, and the exit
Cerrena [4.2K]

Answer:

a) ΔEC=-23.4kW

b)W=12106.2kW

c)A=0.01297m^2

Explanation:

A)

The kinetic energy is defined as:

\frac{m*vel^2}{2} (vel is the velocity, to differentiate with v, specific volume).

The kinetic energy change will be: Δ (\frac{mvel^2}{2})=\frac{m*vel_2^2}{2}-\frac{m*vel_1^2}{2}

Δ (\frac{mvel^2}{2})=\frac{m}{2}*(vel_2^2-vel_1^2)

Where 1 and 2 subscripts mean initial and final state respectively.

Δ(\frac{mvel^2}{2})=\frac{12\frac{kg}{s}}{2}*(50^2-80^2)\frac{m^2}{s^2}=-23400W=-23.4kW

This amount is negative because the steam is losing that energy.

B)

Consider the energy balance, with a neglective height difference: The energy that enters to the turbine (which is in the steam) is the same that goes out (which is in the steam and in the work done).

H_1+\frac{m*vel_1^2}{2}=H_2+\frac{m*vel_2^2}{2}+W\\W=m*(h_1-h_2)+\frac{m}{2} *(vel_1^2-vel_2^2)

We already know the last quantity: \frac{m}{2} *(vel_1^2-vel_2^2)=-Δ (\frac{mvel^2}{2})=23400W

For the steam enthalpies, review the steam tables (I attach the ones that I used); according to that, h_1=h(T=500C,P=4MPa)=3445.3\frac{kJ}{kg}

The exit state is a liquid-vapor mixture, so its enthalpy is:

h_2=h_f+xh_{fg}=289.23+0.92*2366.1=2483.4\frac{kJ}{kg}

Finally, the work can be obtained:

W=12\frac{kg}{s}*(3445.3-2438.4)\frac{kJ}{kg} +23.400kW)=12106.2kW

C) For the area, consider the equation of mass flow:

m=p*vel*A where p is the density, and A the area. The density is the inverse of the specific volume, so m=\frac{vel*A}{v}

The specific volume of the inlet steam can be read also from the steam tables, and its value is: 0.08643\frac{m^3}{kg}, so:

A=\frac{m*v}{vel}=\frac{12\frac{kg}{s}*0.08643\frac{m^3}{kg}}{80\frac{m}{s}}=0.01297m^2

Download pdf
7 0
3 years ago
A stone is thrown horizontally at 60.0 m/sm/s from the top of a very tall cliff. Calculate its horizontal position and vertical
svp [43]

Answer:

X-Positions:                                         Y-Positions

x(0) = 0                                                   y(0) = 0

x(2) = 120 m                                           y(2) = 19.6 m

x(4) = 240 m                                          y(4) = 78.4 m

x(6) = 360 m                                          y(6) = 176.4 m

x(8) = 480 m                                          y(8) = 313 m

x(10) = 600m                                         y (10) = 490 m

Explanation:

X-Positions

  • First, we choose to take the horizontal direction as our x-axis, and the positive x-axis as positive.
  • After being thrown, in the horizontal direction, no external influence acts on the stone, so it will continue in the same direction at the same initial speed of 60. 0 m/s
  • So, in order to know the horizontal position at any time t, we can apply the definition of average velocity, rearranging terms, as follows:

       x = v_{ox} * t = 60.0 m/s * t(s)

  • It can be seen that after 2 s, the displacement will be 120 m, and each 2 seconds, as the speed is constant, the displacement will increase in the same 120 m each time.

Y-Positions

  • We choose to take the vertical direction as our y-axis, taking the downward direction as our positive axis.
  • As both axes are  perpendicular each other, both movements are independent each other also, so, in the vertical direction, the stone starts from rest.
  • At any moment, it is subject to the acceleration of gravity, g.
  • As the acceleration is constant, we can find the vertical displacement (taking the  height of the cliff as the initial reference level), using the following kinematic equation:

       y = \frac{1}{2} * g* t^{2} = \frac{1}{2} * 9.8 m/s2 * t(s)^{2}

  • Replacing by the values of t, we get the following vertical positions, from the height of the cliff as y = 0:
  • y(2) = 2* 9.8 m/s2 = 19.6 m
  • y(4) = 8* 9.8 m/s2 = 78.4 m
  • y(6) = 18*9.8 m/s2 = 176.4 m
  • y(8) = 32*9.8 m/s2 = 313.6 m
  • y(10)= 50 * 9.8 m/s2 = 490.0 m
5 0
3 years ago
How many electrons are in the element that comes just before platinum in the periodic table?
laila [671]

The element is iridium and it has 77 electrons

7 0
3 years ago
Other questions:
  • What will occur if a resistor with high resistance is inserted into a circuit?
    6·2 answers
  • A sound-producing object is moving away from an observer. The sound the observer hears will have a frequency that actually being
    10·2 answers
  • - A person is on an elevator that moves
    8·1 answer
  • Which of the following statements about the Coriolis effect is correct?
    15·1 answer
  • Does anyone know this?!
    15·1 answer
  • Pls help me this is being timed.
    8·1 answer
  • 0.22 L of pancake syrup has a mass of 33 g.
    15·1 answer
  • A glass of water has a temperature of 31 degrees Celsius. What state of matter is it in?
    7·1 answer
  • Your chances of getting into a collision when talking on a cell phone _________: A. Double B. Triple C. Quadruple D. Remain the
    13·1 answer
  • What is the weak nuclear force?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!