Answer:
ΔT = Tfinal − Tinitial = 150°C − 35.0°C = 125°C
given the specific heat of iron as 0.108 cal/g·°C
heat=(100.0 g)(0.108 cal /g· °C )(125°C) =
100x 0.108x125= 1350 cal
Answer:
O.1M
Explanation:
First let's generate a balanced equation for the reaction
NaOH + HCl —>NaCl + H2O
From the equation,
The ratio of the acid to base is 1:1.
From the question, we obtained the following:
Ma = Molarity of acid = 0.12M
Va = volume of acid = 21.35cm3
Vb = volume of base = 25.55cm3
Mb = Molarity of base =?
We obtained nA(mole of acid) and nB(mole of base) to be 1
The molarity of the base can be calculated for using:
MaVa/ MbVb = nA / nB
0.12x21.35 / Mb x 25.55 = 1
Cross multiply to express in linear form
Mb x 25.55 = 0.12x21.35
Divide both side by 25.55
Mb = (0.12x21.35) / 25.55
Mb = 0.1M
The molarity of the base is 0.1M
Answer:
I think the first option is the answer
A metallic conductor moving at a constant speed in a magnetic field may develop a voltage across it. This is an example of Motional emf
Hope this helps!
Answer:
Baking soda
Explanation:
Due to its neutralizing properties, sodium bicarbonate can be used to counteract the acid corrosion of car batteries. To use baking soda, in this case, be sure to disconnect the battery terminals before cleaning. Make a paste of three parts baking soda to one part water and apply with a damp cloth to rub the corrosion of the battery terminal. After cleaning and reconnecting the terminals, clean them with petroleum jelly to prevent future corrosion.