<span>So when two metals of equal mass but different heat capabilities are subjected to same heat quantity, the metal with higher heat capacity have the small temperature change. Heat supplied is determined as heat capacity of the metal times the change in temperature.</span>
It's simple.
We know force is the rate of change in momentum.
So F=(mv-mu)/t or F=m(v-u)/t
=1200*(25-10)/5=3600N
Answer: 0.798 m
Explanation:
Given
Mass of the spring oscillator, m = 1.48 kg
Force constant of the spring, k = 35.4 N/m
Speed of oscillation, v = 3.9 m/s
Kinetic Energy = 1/2 mv²
Kinetic Energy = 1/2 * 1.48 * 3.9²
KE = 0.5 * 22.5108
KE = 11.26 J
Using the law of conservation of Energy. The Potential Energy of the system is equal to Kinetic Energy of the system
KE = PE
PE = 1/2kx²
11.26 = 1/2 * 35.4 * x²
11.26 = 17.7x²
x² = 11.26 / 17.7
x² = 0.6362
x = √0.6362
x = 0.798 m