The question is incomplete! circuit figure is attached below and answer and explanation is provided below.
Answer:
Bulb_A = Bulb_B = Bulb_D and Bulb_C = 0.
Explanation:
What happens when switch is open?
When the switch is open Bulb_C is open circuited meaning that there is no way for the current to flow through it. This path offers infinite resistance to the current therefore, current will try to take a least resistance path that is through Bulb_B.
So eventually, when the switch is open the circuit becomes a simple series circuit with path From battery to Bulb_A to Bulb_B to Bulb_D to battery with Bulb_C = 0.
What happens in a series circuit?
We know that in a series circuit, there is only one path for the current to flow therefore, same current will flow through all the series Bulbs and their brightness will be same. Bulb_A = Bulb_B = Bulb_D
Brightness in a series circuit:
We also know know that in a series circuit, resistance gets summed up and voltage across each Bulb gets shared which results in less power dissipation that's why Bulbs connected in series appear dimmer as compared to when they are connected in parallel.
Make a puzzle and each puzzle piece represent a state
Answer:
I think B or C it won't lower so I'll go with B bc warm water is hotter than regular temp water
Answer:
Incident Command Structure, ICS or ICS-like EOC Structure is familiar and aligns with the on-scene incident organization. ICS or ICS-like EOC Structure is familiar and aligns with the on-scene incident organization.
Answer:
Straight line graph attached showing mechanical energy on x-axis and altitude y on y-axis
Explanation:
As mechanical energy is the sum of kinetic energy and potential energy, the ball at a height H possesses potential energy= m.g.H
and Kinetic energy= 0.
But the sum of both energies is equal to m.g.H.
When the ball starts moving, the height starts to decrease and potential energy also decreases with decreasing y. On the other hand kinetic energy starts increasing with decreasing Y. But their sum remains constant i.e equal to mechanical energy. It remains same until the ball touches the ground. The graph attached shows height H or altitude y on x-axis and Mechanical Energy on y-axis. It shows a straight horizental line showing that mechanical energy remains same as y decreases.